raralaran

Interiérouý pruek

Michaela Pilchová, bakalářská práce 2021
Univerzita Tomáče Bati ve Zlíně, FMK

Univerzita Tomáše Bati ve Zlíně
Fakulta multimediálních komunikací
Produktový design
Akademický rok: 2020/2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

Jméno a prímení: Michaela Pilchová
Osobni císlo:
Studijin program:
Studijníobor:
Forma studia:
Téma príce:
K17088
B8206 Výtvarná umění
Multimédia a design - Produktový design
Prezenční
Interiérový prvek

Zásady pro vypracování

[^0]| Rozsah bakalářské práce: | viz Zásady pro vypracování |
| :--- | :--- |
| Rozsah prîloh: | vizZásady pro vypracování |
| Forma zpracování bakalăřké práce: | Tištěná/elektronická |

Seznam doporučené literatury:

BHASKARAN, Lakshmi. Podoby modemiho designu: inspirace hlavnich hnutía stylũ pro současný design. V Praze: Slovart, 2007, 256s. ISBN 978-80-7209-864-4.
CHUNDELA, Lubor. Ergonomie. 3. vyd. V Praze: Ceské vysoké uěeni technické, 2013, 173 s. ISBN 978-80-01-05173-3,
KOLESAR, Zdeno. Kapitoly z dểin designu. Praha: Vysoḱ śkola umẻleckoprủmyslov́, 2004, 167 s. ISBN 80-86863-03-4, KULA, Oaniel, Elodie TERNAUX a Quentin HIRSINGER. Materiology: prơvodce světem materiálù a technologii pro architekty a designéry. Praha: Happy Materials, C2012, 342 s . ISBN 978-80-260-0538-4.
PROṠKOVA, Iva. Tkani na rámu. Praha: Grada, 2010. Výtvarný kurz. ISBN 978-80-247-2274-0.

Vedouci bakalăřké práce:	Mgr. Art. Ivan Pecháček Produktový design
Datum zadání bakalárské práce:	1. prosince 2020
Termin odevzdáni bakalăřské práce:	21. května 2021

L.S.

doc. Mgr. Irena Armutidisová

dëkanka

doc. M.A. Vladimír Kovarík
vedouci ateliéru

PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ / DIPLOMOVÉ PRÁCE

Beru na vědomí, že

- bakalářskáldiplomová práce bude uložena v elektronické podobě v univerzitním informačním systému a bude dostupná k nahlédnuti;
- na moji bakalárskou/diplomovou práci se plně vztahuje zákon č. $121 / 2000 \mathrm{Sb}$. o právu autorském, o právech souvisejicich s právem autorským a o změně některých zákonủ (autorský zákon) ve zněni pozdějšich právnich predpisủ, zejm. § 35 odst. 3;
- podle § 60 odst. 1 autorského zákona má UTB ve Zlině právo na uzavření licenčni smlouvy o užiti školniho dila v rozsahu § 12 odst. 4 autorského zákona;
- podle § 60 odst. 2 a 3 mohu užit své dilo - bakalářskou/diplomovou práci - nebo poskytnout licenci k jejímu využití jen s predchozím písemným souhlasem Univerzity Tomáše Bati ve Zlině, která je oprávněna v takovém prípadě ode mne požadovat priméřený přispěvek na úhradu nákladú, které byly Univerzitou Tomáše Bati ve Zlíně na vytvoření dila vynaloženy (až do jejich skutečné výše);
- pokud bylo k vypracováni bakalárské/diplomové práce využito softwaru poskytnutého Univerzitou Tomáše Bati ve Zlině nebo jinými subjekty pouze ke studijním a vyzkumným účelúm (tj. k nekomerčnímu využiti), nelze výsledky bakalářské/diplomové práce využít ke komerčnim účelủm;
- pokud je výstupem bakalárské/diplomové práce jakýkoliv softwarový produkt, považuji se za součăst práce rovněž i zdrojové kódy, popř. soubory, ze kterých se projekt skládá. Neodevzdáni této součásti múže být dúvodem k neobhájeni práce.

Prohlašuji, že:

- jsem na bakalářské/diplomové práci pracoval samostatně a použitou literaturu jsem citoval. V připadě publikace výsledkủ budu uveden jako spoluautor.

Ve Zlině dne: 20.5. 2021

Tématem bakalářské práce je návrh tkalcovského stavu na rámu s využitím nových materiálů a výrobních technologií, které vyzdvihnou hravý design a usnadní výrobu produktu.

Práce se dělí na dvě části - teoretickou a praktickou. Teoretická část se zabývá stručným obeznámením s tématem, analýzou současného trhu, výrobními možnostmi a hledáním inspirace v historickém období Velké Moravy.

Obsahem praktické části je nastínění cílového konceptu a shrnutí získaných poznatků z části teoretické, na které navazuje dokumentace procesu od skicování, přes první návrhy, různé variace až po finální řešení a volbu materiálu.

Klíčová slova: tkalcovský stav, rám, tkaní, dřevo, plast, design, Velká Morava

Abstract

The topic of bachelor's thesis is design of weaving frame loom with usage of new materials and manufacturing technologies which will support playful design of the final product and will make the production potentially easier.

The work is separeted into two parts - theoretical and practical. Theoretical part deals with brief introduction of the topic, analysis of current market offer, usually used manufacturing methods and searching for inspiration in historical period of The Great Moravia.

Content of practical work consists of chosen concept and summary of new knowledge from theoretical part. Work then continue with documentation of design process from sketching, over first ideas to final solution and choice of material.

Keywords: weaving loom, frame, weaving, wood, plastics, design, The Great Moravia

Ráda bych poděkovala panu MgA. Ivanu Pecháčkovi za pomoc a odborné rady nejen při vedení této práce, ale i po celou dobu studia. Současně chci poděkovat své rodině, která mi byla oporou a motivací od samého počátku volby studia.

Obsah

ÚVOD
TEORETICKÁ ČÁST 1
1 TKALCOVSKÝ STAV 2
1.1 Definice 2
1.2 Základní pojmy 2
1.3 Historie 3
1.3.1 Pravěk 3
1.3.2 Starověk 4
1.4 Rozdělení 6
1.4.1 Vertikální tkaní 6
1.4.2 Horizontální tkaní 6
1.4.3 Dekorační tkaní 7
1.4.4 Příslušenství $\quad 7$

2 ÚVOD DO MATERIÁLU゚ 10
2.1 Hlavní materiál 10
2.1.1 Dřevo 10
2.1.2 Druhy 13
2.1.3 Povrchová úprava 15
2.2 Spojovací materiál 16
2.2.1 Truhlářské spoje 17
2.3 Doplňkový materiál 18
2.3.1 Překližka 18
2.3.2 3D tisk 18
2.3.3 Recyklace 19
$2.4 \quad$ Výrobní technologie 19
2.4.1 CNC frézování 20
2.4.2 Řezání laserem 20

3 REŠERŠE 21
3.1 Vertikální tkalcovské stavy 21
3.1.1 Melissa and Doug 21
3.1.2 Beka 23
3.1.3 Ashford Handicrafts 26
3.2 Horizontální tkalcovské stavy 27
3.2.1 Studio Koekoek 27
3.2.2 Schacht Spindle 28
3.2.3 Louët 29
3.2.4 Beka 30
3.2.5 CraftWoodGoods 31
3.3 Alternativní tkalcovské stavy 32
3.3.1 Studio Koekoek 33
3.3.2 Schacht Spindle 33
3.3.3 Haw Thorn Handmade 34
3.3.4 Maille name is 35
3.3.5 My Total Handmade 35

4 INSPIRACE 36
4.1 VELKÁ MORAVA 39
4.1.1 Šperk 40
PRAKTICKÁ ČÁST 41
5 CÍL PRÁCE 42
5.1 Koncept 45
5.2 Inspirace 45
5.3 Požadavky produktu 45
6 PROCES NAVRHOVÁNÍ 43
6.1 Hledání tvarového řešení 43
6.1.1 Vývoj konstrukce 46
6.1.2 Vývoj detailů konstrukce 50
6.1.3 Návrh příslušenství 52
$7 \quad$ PROTOTYPOVÁNÍ 55
8 PRODUKT 56
8.1 Konstrukční řešení 57
8.1.1 Spojovací materiál 57
8.1.2 Využití odpadového materiálu 58
8.1.3 Volba materiálu 59
8.1.4 Povrchová úprava 61
8.2 Vizualizace 61
9 TECHNICKÁ DOKUMENTACE
ZÁVĚR 64
SEZNAM POUŽITÉ LITERATURY 65
SEZNAM POUŽITÝCH SYMBOLU゚ A ZKRATEK 68
SEZNAM OBRÁZKU゚ 69
SEZNAM TABULEK 74

Úvod

Cílem mé bakalářské práce je nahlédnutí do světa tkaní a vytvoření setu tkalcovského stavu na rámu a pomůcek na základě využití netradičních materiálů, které zvýrazní hodnotu výrobku svými hravými tvary. Zásadním bodem je vnést do běžně monotónního produktu život pomocí barev a rozmanitých tvarů v podobě alternativního materiálu, který zároveň nahradí a usnadní výrobu původně dřevěných složitějších dílů.

Výběr tématu ovlivnilo mé ponoření do textilních technik tkaní a tradičních řemesel, které tvoří důležitou část mého volně tráveného času v současné době. Odhodlání bylo vyvoláno čerstvým zájmem o rekonstrukci středověkého života na našem území z období 9. století. Tuto neobvyklou činnost bylo z mého pohledu důležité ztvárnit v této práci v rámci rešerše a inspiračních zdrojů na základě vlastního zápalu pro umění té doby a vášni pro tkaní, které bylo zároveň denní rutinou tamního života nejen řemeslníků.

Obsah teoretické části pojednává o stručném vývoji tkalcovského stavu, o současné nabídce trhu, o rozdělení druhů stavů a používaných materiálů ve výrobním procesu. V samotném závěru teoretické části se věnuji stručnému seznámení s historickým obdobím, ze kterého bude nadále čerpat praktická část bakalářské práce.

Teore-

tická

01. Tkalcouský stau

Textilní technika tkaní doprovází lidstvo již od pravěku a ani dnes se příliš neliší od toho původního. Ačkoliv se technika od primitivních tkalcovských stavů k moderním mechanickým a tryskovým vyvíjela tisíce let, podoba dnešních zejména ručních stavů se téměř nezměnila.

Tkalcovský stav na rámu patří mezi jednoduché nástroje na výrobu tkanin a textilních dekorací. Stavy se zpravidla dělí na stolní, svislé a stojanové, přičemž na trhu jsou stavy běžně dostupné v různých variantách a velikostí s nebo bez příslušenství ke tkaní.

Tkaní označuje techniku textilní výroby spočívající v opakujícím se křížení dvou soustav nití (osnovní a útkové) v kolmém směru. Výsledkem tkaní je tkanina.

Tkanina je plošná textilie, která vzniká křížením nití v kolmém směru jako výsledek tkaní.

Osnova značí soustavu nití ve svislé poloze, která definuje konečnou délku tkaniny. Příprava osnovy se také nazývá snování a během procesu vzniká před provedením útku, proto je občas přezdívána jako návod ke tkaní.

Útek se vnáší ve vodorovné poloze do předem připravené osnovy pomocí člunku nebo se provléká tkací jehlou. Na rozdíl od napnuté osnovy, útek není pod vysokým napětím, proto musí být útek volnější, aby při tkaní osnovu nezužoval.

Vazný bod je označení pro místo, kde dochází ke křižení osnovy a útku. Podle umístění jednotlivých nití rozeznáváme vazný bod osnovní a útkový. Vazný bod osnovní vzniká, když je osnovní nit nad útkem, a naopak vazný bod útkový značí, že útek se nachází nad osnovou.

Prošlup se nazývá mezera, která vzniká zvedáním liché nebo sudé části osnovních nití. Mezera dělí liché a sudé nitě do dvou rovin a vytváří tak volné místo pro vnesení člunku nebo jehly s útkem. Prošlup lze také vytvářet provlékáním tkací jehly postupně nit za nití.

Prošlupní zařízení pomáhá usnadnit práci při vytváření prošlupu.
Tkací hřeben se používá ke stloukání útku ke tkanině pro zpevnění tkaniny a zajištění pravidelné vazby po celé délce.

Tkací jehla se také nazývá vidlice a namotává se na ni útková nit. Jehly se liší podle velikosti a druhu tkalcovského stavu. Závisí na šířce tkaniny a způsobu, jakým se bude tkát. Pro malé plochy poslouží ke tkaní i obyčejná čalounická jehla, se kterou se tká proplétáním jednotlivých nití, ale obvyklé jsou dřevěné jehly (s tupou špičkou a velkým otvorem), na které se namotá příze útku a následně se protahuje prošlupem.

Člunek nahrazuje tkací jehlu při tkaní na větším tkalcovském stavu. Stejně jako tkací jehla, člunek se používá k proplétání útku osnovou nebo prohození prošlupem. U ručního tkaní se používá primitivního člunku, často kus plochého dřeva se zářezem na obou koncích, do kterých se po celé jeho délce navijí příze útku. Velikost často závisí na šířce daného stavu kvůli snadnějšímu vnesení přes prošlup.

Samotné počátky tkaní byly časově i kvalitou provedením velmi náročné, ale postupně se začalo vyvíjet a stejné principy se používají i v dnešní době.

Jednou z nejstarších dochovaných řemesel v naší historii je právě ono tkaní. Tato technika má své kořeny již v době neolitu (90004000 let př. n. l.). Tkaní se tehdy stalo základním způsobem zhotovováním textilií a každá domácnost vyráběla tkaniny pro své vlastní potřeby. Pro tehdejší lidi bylo tkaní nepostradatelnou dovedností, kterou bylo nutné ovládat a časem se dokonce stávala tradicí, která přetrvala tisíciletí. (quatr, © 1996-2018)

Obr. 1. Vertikální stav se závažím na výjevu vázového malírstvíz 6. století př.n. l.

Tkalcovský stav v jeho nejstarší podobě se datuje podle dosud známých nálezů na 7000 let př. n. l. z turecké Anatolie. Tehdejší konstrukce se skládala z dřevěného rámu s pevně napnutou osnovou, která se postupně proplétala útkem. Jednalo se o stav s primitivní konstrukcí svázání čtyř větví k vytvoření rámu (bylo možné tkát ve svislé i horizontální poloze) nebo dvěmi horizontálními tyčemi (horní tyč mohla být připevněna například k větvi stromu, zatímco spodní byla zatížena k zemi). Osnova tak byla napínána mezi tyto tyče bez dalších pomůcek. Tkání ale bylo možné pouze v omezené délce. Z tohoto důvodu si lidé začali klást otázky ohledně praktičnosti daného rámového stavu. Samotný proces byl velmi pomalý a oděv z tkanin si mohli dovolit jen lidé z vyšší vrstvy. (Urbanová, 2012, str. 19)

Naneštěstí kreativní mysl lidstva nezahálela a zhruba o 1000 let později se začalo tkát na vertikálním stavu s osnovou, která byla napnutá pomocí závaží, což vyřešilo problém omezené délky tkaniny. Použití závaží bylo inovativní v rámci funkce, kterou nabídlo, napínalo osnovní nitě, a tudíž plnilo i funkci osnovního válu ${ }^{1}$. Tkanina vzniklá na tomto typu stavu je zároveň také nejstarší, jaká byla na českém území dosud nalezena, je 7000 let stará (naleziště v Lulči u Vyškova). Konstrukci vertikálního tkalcovského stavu tvořily dvě svislé postranice ${ }^{2}$ a dvě tyče v horizontální poloze. Web Archeologie na dosah (© 2012-2020) uvádí, že horní podélná tyč bývá nazývána osnovní vál, jelikož se na ní během procesu tkaní může navíjet osnova a kontrolovat délku výsledné tkaniny. Samotná osnova, která je připevněna na horní tyč je zároveň zatížena závažím kvůli pevnému napětí a snadné manipulaci při následném navíjení osnovy na horní tyč. Tento typ tkalcovského stavu mohl být také opatřen stojanem a stojí bez nutnosti opření o stěnu, zároveň se objevovaly stavy, které měly postranice zapuštěné do země.

Řemeslo se v průběhu tisíce let pomalu zdokonalovalo a tkalci přišli s novým vylepšením. Podle nálezu z Egypta se už roku 4400 př. n. l. využívalo prošlupových tkalcovských stavů se zařízením pro zvedání osnovy a vytváření prošlupu. Vynález velmi urychlil proces tkaní. Tkalci zjistili, že při vložení tyče (též zvané list nebo činka) každé liché nitě osnovy mohou zvednout část osnovy a vytvořit prošlup, kterým následně doslova prohodí člunek s útkovou nití z jedné ruky do druhé. V případě tkaní širší šíre tkaniny mohli na jednom stavu pracovat dva tkalci a člunek si předávat. Ačkoliv ale bylo možné vytvořit prošlup na jedné straně, pro zpáteční cestu nemohli postupovat stejným způsobem a bylo nutné následující řadu tkaniny proplétat ručně. Vyřešení problému na sebe nenechalo čekat dlouho a z 4. tisíciletí př. n. l. je doloženo dokonce používání a vynález prvních nitěnek ${ }^{3}$.

[^1]

Obr. 2. Výjev z Egypta

Nitěnka je v tkalcovství nejstarší pomůckou, která značně urychlila proces tkaní, a i tkaniny se následně pravděpodobně zlevnily a více lidí si mohlo dovolit kvalitnější oděv. První primitivní nitěnkou se rozumí dřevěná hůlková tyč (také zvaná list), na kterou se přivázaly volné smyčky provázku nebo příze a smyčkami se poté provlékla každá lichá osnovní nit po celé šíríi osnovy. Všechny provlečené osnovní nitě poté, jakmile si je tkadlec k sobě přitáhl, se oddělily od sudých neprovlečených nití a vytvořily prošlup pro průchod útku. Dokonalost nitěnky spočívá v možnosti vytváření prošlupu v obou směrech a tkalci se velmi usnadní práce, jelikož už nemusí druhou stranu provlékat ručně. (quatr, © 1996-2018)

Z období starověkého Egypta byl zachován následující znepokojivý text: „Každý tkadlec je na tom hůře než žena. Jeho kolena jsou na místě srdce. Nikdy nepřijde na čerstvý vzduch. Nevyrobí-li za den předepsané množství tkaniny, je svázán. Chce-li vidět denní světlo, musí zaplatit hlídačům u vchodu." (Prošková, 2010, str. 9)

V Egyptě při práci na vertikálním stavu pracovaly nejen ženy, ale i muži, dle nálezů pravděpodobně v nepohodlné poloze v kleče.

Výroba a principy tkalcovských stavů se vyvíjely i nadále, v Číně se vynalezl tzv. podnožkový stav ${ }^{4}$, pomocí nohou mohl tkadlec ovládat vytváření prošlupu a uvolnit ruce. Tento vynález se postupem času více zdokonaloval a vznikly různé mechanické tkací stroje, které vedly až k dnešní masové produkci tkanin. Avšak tímto vývojem se nadále nebudu ve své práci zabývat, jelikož to není pro mou bakalářskou práci podstatné.

S bohatou historií a vývojem tkaní máme dnes k dispozici nejrůznější metody a techniky, jak pracovat a vytvářet tkanou textilii. Mezi nejoblíbenější patří především tkaní na dřevěných karetkových destičkách nebo na kolíkovém stavu. Nejvíce rozšířeným nástrojem je samotný tkalcovský stav, který má dnes mnoho podob. (dumpodjasanem, © 2001)

Pro ruční tkaní se v dnešní době využívá mnoho tkalcovských stavů, při výběru záleží, co plánujete tkát. Na trhu jsou dostupné stavy mnoha různých variant, například vertikální, stolní, kreativní, na jedno použití nebo pro drobné práce s dětmi. V mé práci jsou stěžejní primitivní tkalcovské stavy na rámu, tento typ nabízí vznik tkaného umění, dekorace, malé koberce nebo tkaniny pro rekonstrukci historického období.

1.4
 Rozdēlení

Vertikální stav na rámu vychází z konstrukce primitivních tkalcovských stavů, které se používaly už v době neolitu. Avšak přes obrovskou časovou linií má tento typ stavu velký úspěch a oblibu mezi lidmi s láskou pro tradiční řemesla iv současné době. Vertikální stav se používá především pro ruční tkaní dekorativních tapet na zed, koberečků, tzv. hadráků, rekonstrukci historického období nebo jako prostředek pro výrobu tkaných kabelek, šátků, dek a dalších produktů. Vertikální stavy bývají většinou vybaveny stojanem pro lepší stabilitu při práci, zejména když se jedná o stav obrovských rozměrů, u kterého je nutné stát či sedět. Přesto se ale na trhu objevují stavy menších velikostí pro drobné práce nebo do menších prostor bytu. Zpravidla se vyrábí z těžkého bukového dřeva a jeho výhodou je široká škála výsledných výstupů tkanin a tkaných produktů.

Ruční tkalcovské stavy mají velmi podobné principy a mechanismy, proto se horizontální stav příliš neliší od toho vertikálního. Na stavu se tká většinou v podélné rovině a lze si jej snadno přizpůsobit, at̉ se tká na stole, na zemi nebo venku na zahradě. Obrovskou výhodou tohoto typu stavu je praktičnost a možnost snadného přenesení či transportu bez nutnosti rozložení celé konstrukce. Především díky možnosti přenosu patří tento stav mezi velmi častou volbu pro začátečníky, kteří nemají s tkaním příliš velké nebo žádné zkušenosti. Stav se vyrábí v podobě rámu, občas dokonce i s navíjecím nosníkem 5 (na principu osnovního válu). Nevýhodou je zde omezený prostor ke tkaní, který lze složitou cestou vyřešit, ale ve většině případů to není nutné, jelikož stav často slouží pouze k dekorativním účelům nebo jako interaktivní hračka pro děti. Přesto je důležité dávat si při tkaní pozor na příliš pevné utahovaní útku, protože na rozdíl od vertikálního stavu zde nemáme dobrou viditelnost nad pravidelností tkaniny a šířka tkaniny se může postupně začít zužovat bez možnosti nápravy.

[^2]Tzv. dekorační tkalcovské stavy na rámu jsou určené především pro děti nebo úplné začátečníky, kteří si tkaní chtějí jen vyzkoušet. Tento typ lze totiž velmi snadno vyrobit i v domácích podmínkách za pomocí ostrých nůžek a kusu lepenky. Tato podoba stavu je poměrně nová, a ne příliš častá mezi už zkušenými tkalci. Jedná se o stav na rámu ve velmi malé velikosti nebo rozmanitých tvarů. Osnova se často nenatahuje přes vyřezané otvory, ale přímo naskrz provrtaný otvor v ohraničeném rámu stavu. Tento princip otevírá nové dveře pro kreativnějesí tkaní, jelikož se stavy na tomhle principu mohou vyřezávat, frézovat na CNC obráběcích strojích nebo v domácích podmínkách stříhat do nejrůznějších tvarů s využitím různých materiálů (nutnost využití př̌írodních materiálů jako je například dřevo, se zde ztrácí a nabízí se možnost použití nových běžně dostupných nebo recyklovaných materiálů). Časté jsou například stavy s kruhovým rámem, pětistranné nebo šestistranné, ve tvaru mraku, kopretiny nebo ryby, fantazii se meze zkrátka nekladou. Avšak v případě stavu v netradičním rozmanitém tvaru se už přestává jednat o tkalcovský stav s účelem tkaní běžných výstupů a produktů, naopak vznikají dekorace v daném tvaru, které se po dokončení tkaní mohou umístit i s rámem jako dekoračním prvkem na stěnu jako obrázek. V této fázi se tedy jedná o stav na jedno použití, ale v případě stavu například s kruhovým rámem je možné výslednou tkaninu doplnit o třásně (třásně po celém okruhu nedovolují párání) a následně vyjmout z rámu a využít například jako prostírání na jídelní stůl.

Vývoj tkalcovských stavů šel postupem času po boku s vývojem příslušenství pro usnadnění procesu tkaní. Nejzákladnějsí a nejvíce používané pomůcky ke tkaní jsou zejména tkací jehly, člunky a zařízení pro vytvoření prošlupu, které nahrazuje nitěnky ${ }^{6}$.

Tkací jehly se vyrábí v různých velikostech a odlišných materiálech. Zkušení tkalci dávají přednost dokonce gobelínovým nebo čalounickým zahnutým jehlám, které usnadňují proplétání osnovy. Důležitým východiskem pro tkací jehlu je velký otvor, ideálně s tupou špičkou, aby se předešlo případnému poškození příze (Prošková, 2010, str. 23). Tkadlec využívá tkací jehly při tkaní složitých vzorů nebo při práci na malých stavech pro dekorační účely. Jehly přímo ke tkaní jsou vyráběné často ze dřeva, plastu nebo kovu. Dříve se využívalo zejména kovových gobelínových jehel, ale v posledních letech se dává přednost hlavně jehlám zhotovených ze dřeva. Velikost jehel se liší dle velikosti stavu, proto je na trhu k dostání široký sortiment tkacích jehel v různých velikostech. Menší se zpravidla využívají pro práci s detailem, zatímco ty velké pro snazší proplétání osnovou v případě, že tkadlec nevlastní zařízení pro vytvoření prošlupu.

Člunek slouží k proplétání útku osnovou nebo protažením prošlupu. Při tkaní na ručním stavu se používá primitivních člunků vyrobených většinou ze dřeva (případně z plastu nebo recyklované
${ }^{6}$ Nitěnka $=$ používá se k oddělení osnovních nití pro vytvoření prošlupu a snadnému průchodu útku
lepenky) z jedné plochy, na kterou se namotá požadovaná délka příze útku. Tkadlec většinou vlastní minimálně 2 člunky, jelikož při tkaní vazby o více barvách je snazší člunky časem vyměnit než znovu namotávat. Velikost člunků se stejně jako u tkacích jehel liší a ke každému stavu je vhodný (nikoliv nutný) člunek o stejné nebo delší šířce, než má daný tkalcovský stav.

Tkací hřeben je dalším užitečným nástrojem, který usnadní tkalci život. Zpravidla pokaždé, když se dokončí jedna řada, je nezbytné útek přirazit k předchozímu řádku tkaniny. Tím se zabrání vzniku mezer a nepravidelné vazby. Tkací hřeben se také využívá k řízení hustoty, přitloukání příze těsně na sebe vytvoří velmi pevnou a hustou tkaninu, naopak jemné přitloukání rádků má za výsledek pružnou tkaninu vhodnou k následnému použití na oděv. Opět se na trhu objevuje mnoho druhů tkacích hřebenů rozdělených podle velikosti, materiálů a tvarů. Ačkoliv se k výběru nabízí velké množství, přesto mnoho tkalců, zejména začátečníků tuto pomůcku nahrazuje alternativními možnostmi nalezených v domácnosti. K přitloukání útku je velmi časté používání obyčejných hřebenů na vlasy nebo jídelní vidličky.

Prošlupní zařízení funguje na principu naklánění. Pomůcka se používá především při tkaní jednoduché plátnové vazby, jelikož velmi usnadňuje a urychluje proces tkaní, zároveň lze u většiny typů kdykoliv odebrat a tkát bez ní. Pomůcka slouží k vytváření prošlupu osnovy pro protažení útku. Proto je nutné, aby byla osnova pevně napnutá a správně natažená, poté se může se zařízením pracovat. V prípadě, že zařízení nakloníte na jednu stranu, zvednou se liché nitě osnovy a vytvoří prošlup pro prohození člunku s útkem. Naopak při naklonění na druhou stranu, se zvednou sudé nitě osnovy a člunek je možné prohodit zpátky.

Obr. 3 Sada základních pomůcek ke tkaní

Obr. 4 Prošlupní zařizení

02. Úvod do materiálů

Tato kapitola se zabývá studií používaných materiálů, estetickými úpravami, zpracováním a konstrukčními spoji v oblasti nábytkářství.

Při výrobě tkalcovského stavu přijde na mysl vždy jedna stěžejní otázka ohledně volby materiálu. Odpověd’ se ve většině případů shoduje a většinou vyhraje dřevo. Dřevo je přírodní materiál, který je lidstvu znám a neustále používán už od nepaměti k rozvíjení civilizace. První tkalcovské stavy vertikálního typu byly seskládány z větví stromů, poté se v průběhu let vyvíjely, ale nikdy neopustily materiál, který je na tento svět přivedl. Dokonce ani v dnešní technologicky vyspělé době všestrannější ekologický materiál, který by dřevo nahradil, se snadno nenajde. Dřevo zkrátka patří do lidských životů, interiérů a zahrad. Časem se mění a vylepšuje pouze způsob opracování a obrábění, což v oblasti truhlářství velmi usnadňuje a efektivně zvyšuje samotnou produktivitu.

Dřevo je všestranný stavební materiál se snadnou dostupností, vynikající pevností a pružností bez sebemenší konkurence. Materiál bývá velmi odolný a trvanlivý se skvělými vlastnostmi k dalšímu zpracování všeho druhu. Avšak čím dřevo nejvíc vyniká a je důvodem, proč se jedná o nejčastěji používaný materiál, je ekologická udržitelnost. Jedná se o obnovitelný materiál, který se sám biologicky rozkládá. Zároveň v porovnání s ostatními stavebními materiály má dřevo nejnižší uhlíkovou stopu, což je v současné době velmi cennou vlastností, při likvidaci navíc produkuje tepelnou energii. (Kula a Ternaux, 2012, s. 11)

Dřevo ovšem není dokonalé, a i ono sebou nese několik nedostatků. Organický materiál může být ohrožen biotickými ${ }^{7}$ a abiotickými ${ }^{8}$ vlivy, které mohou mít za následek deformaci nebo rozpad dřeva. Biotickým faktorem se rozumí například napadení dřeva dřevokaznou houbou nebo škůdci, kteří mají schopnost trávit dřevo. V takovém prrípadě je nutné materiál chemicky ošetřit fungicidními nátěry proti houbám nebo insekticidními postřiky proti hmyzu, v horší situaci pomůže pouze výměna napadených kusů.

[^3]Pozornost se ovšem musí věnovat i abiotickým vlivům na zhoršení kvality dřeva. Zde je nutné počítat s vnějšími vlivy slunce, povětrnostními podmínkami, vodou a vlhkostí. Protože dřevo patří mezi hygroskopické materiály, které absorbují vlhkost okolního prostředí. Při pohlcení vlhkosti tak dřevo získává na objemu a měkne, jeho strukturální vlastnosti se postupně oslabují, a nakonec dochází k deformaci. Naopak při vysušení, dřevo začíná tvrdnout a objem se začíná snižovat.

Dřevo můžeme dělit podle různých kritérií, ale jelikož dřevo pochází ze stromů, základním kritériem je rozdělení samotných stromů podle botanické skupiny:

- Nahosemenné, běžně známé jako jehličnaté
- Krytosemenné, známé také jako listnaté

Listnaté (opadavé) tvrdé dřevo

Každý strom nabízí mimo estetické vlastnosti, vlastnosti různorodé v rámci pevnosti, trvanlivosti a pružnosti. Na základě znalostí chování dřeva se poté můžeme rozhodovat pro tvrdé nebo měkké dřevo podle dělení hustoty:

- Velmi měkké (smrk, borovice, jedle, limba, topol, lípa, balza, vrba)
- Měkké (bříza, jalovec, vrba jíva, modřín, douglaska, kleč, střemcha, teka obrovská ${ }^{9}$)
- Středně tvrdé (líska, kaštan, platan, jilm)
- Tvrdé (habr, akát, dub, tis, buk, jasan, javor, třešeň, jabloň, švestka)
-

Velmi tvrdé (habr, dub pýřitý, zimostráz, ptačí zob, dřín, svída)
-
Mimořádně tvrdé (eben cejlonský, kebračové dřevo, africké černé dřevo)
(Kavina, 1932, s. 100)
Nejčastěji se ale setkáme s rozdělením pouze na měkké, středně tvrdé a tvrdé dřevo.

Dalším rozdělením dřevin je dělení podle pórovitosti:

- Kruhovitě pórovité (morušové dřevo, jilm, dub, jasan, akát)
- Roztroušeně pórovité (tř̌ešeň, střemcha, jabloň, buk, bříza, habr, javor)

Podle poznatků Forrestera (2009, s. 8-9) se vyskytují tvrdé dřeviny kruhovitě pórovité se zřetelně znatelnými letokruhy, které značí proběhlé roční období. Naopak kruhovitě roztroušené dřeviny, neoznačují uběhlé roky ale střídající se vegetační období.

Obr. 6 Rozdělení pórovitosti

[^4]Nedílnou součástí rozdělení je v neposlední řadě podle vlastností dřeva:

- Vnějsí vlastnosti (barva, lesk, kresba, textura)
- Vnitřní vlastnosti (hustota, odolnost, vlhkost, akustika, tepelné vlastnosti)
(oknotherm, © 2021)

Ačkoliv se druhů dřevin vyskytuje mnoho tisíc, ne všechny jsou snadno dostupné. Přesto se ale na trhu nachází velký výběr vhodného druhu dřeva pro každý projekt. V následujících řádcích se bude tato podkapitola zabývat průzkumem tvrdých dřevin běžně používaných při výrobě vertikálních a horizontálních tkalcovských stavů na rámu.

Bukové dřevo bývá první volbou při výběru vhodného dřeva pro tkací rám. Jedná se o tvrdé dřevo listnatého původu s všestrannými vlastnostmi. Paleta barev bukového dřeva si zahrává se světle krémovou barvou (ideální pro barvení a moření), občas s růžovohnědým zbarvením a charakteristickou jemnou kresbou, místy se dokonce objevuje i buk s tmavým červenohnědým zbarvením. Samotné dřevo vyniká odolností, je houževnaté, pevné, dobře se lepí, reaguje na ohýbání párou, ale také je velmi dobře opracovatelné. Není tedy divu, že uplatnění bukové dřevo nalezne zejména v nábytkářství při výrobě židlí (skvěle se tvaruje), stoliček a podlah. Odolnost proti nárazům je stěžejním důvodem, proč se jedná o vhodný materiál pro denně používaný vysoce namáhaný nábytek. (Forrester, 2009, s. 13)

Z ekonomického hlediska buk spadá pod běžně dostupné dřeviny s vynikající cenou. Dřevo je rozšířené na mnoha severních kontinentech včetně Evropy. A díky své nízké ceně a skvělým vlastnostem patří mezi oblíbené druhy dřeva. Přesto není dokonalé a nehodí se pro použití v exteriéru kvůli náchylnostem k vnějším biotickým vlivům.

Materiál si se svou jemnou kresbou a světlým zbarvením zachovává jakousi eleganci. V keltské mytologii byly dokonce lesy porostlé buky, a i samotné stromy spojeny se symbolem ženskosti. Například ve Velké Británii je buk považován za královnu stromů, zatímco dub je králem. (wlwest, © 2019)

Javorové dřevo láká zejména něžné duše. U tkalcovských stavů se nevídá velmi často jako buk, ale svým výrobkům dodává na lehkosti a eleganci i při masivním vzhledu. Na trhu se objevují zejména dva druhy javoru: javor cukrový, který se řadí mezi tvrdá dřeva a javor červený patřící mezi měkká dřeva, ale svou hustotou se př́liš neliší od javoru cukrového. Má sice tmavší barvu, ale mnohem lépe se opracovává. (Forrester, 2009, s. 14)

Všeobecně se jedná o velmi silné, houževnaté dřevo, které je jedinečné svou čistotou, materiál disponuje velmi světlým (občas světle hnědým) odstínem.

Eleganci čistého vzhledu javor získává kvůli využití zejména bělového ${ }^{10}$ dřeva namísto jádrového ${ }^{11}$. Ačkoliv je jádro mnohem tmavší ve škále červeného a hnědého zbarvení, běl se pohybuje na paletě od bílé po bělavě krémovou, občas mírně nažloutlou. Zbarvení napovídá, že se tohle tvrdé dřevo skvěle moří. V nábytkářství se proto javor často moří, aby nahradilo mnohem dražší, ne příliš dostupné dřevo, například mahagon. Zatímco javor je velmi dostupnou variantou, jelikož stromů se vyskytuje v hojném množství, těžba mahagonového dřeva není ekologicky šetrná k životnímu prostředí a nese s sebou následek velkého odlesňování ve Střední a Jižní Americe. Moření javoru je proto ekologicky i ekonomicky mnohem lepší volbou.

Široké využití javor nachází v oblasti výroby nábytku, podlah, dýh a hudebních nástrojů. Na druhou stranu obdobně jako buk, javor není vhodný pro použití ve venkovním prostředí.

Jasanové dřevo není velmi častým kandidátem pro výrobce tkalcovských stavů na rámu. Ti běžně shledávají vhodnější variantou buk, javor nebo různé druhy překližek. Napřič tomu se na trhu naleznou i rámy ze silného jasanového dřeva, které je typické svou výraznou hrubou kresbou s rovnými vlákny (Forrester, 2009, s. 16).

V dřevařském průmyslu se jedná o klíčový materiál. Jasan vyniká pevností, pružností, je houževnatý, trvanlivý a odolný proti nárazům. Spolu s atraktivním světle zbarveným vzhledem a výraznými letokruhy, které vytváří esteticky příjemnou kresbu, se často uplatní při výrobě nábytku. Barva přechází od béžové k světle hnědému až načervenalé hnědé, přičemž naopak běl bývá lehce světlého odstínu. S porovnáním ostatních dřevin, se zde vyskytuje zajímavost ohledně barevného rozlišení bělu a jádra. Občas je docela obtížné rozeznat, kde končí běl a začíná jádro, poněvadž mívají podobný odstín a hranice se určuje obtížně.

Jasan je všeobecně vyhlášený svou schopností ohýbat se, které není tolik nákladné jako u jiných druhů. Uplatnění proto nalezl mimo nábytek zejména při výrobě sportovního vybavení, protože je odolný proti nárazům. Ačkoliv je běžné, že zvýšená hustota dřeva se sebou nese vyšší hmotnost, jasan byl obdařen jedinečnou lehkostí. Dříve se například při výrobě baseballových pálek používal javor, ale později byl zaměněn právě jasanem, který disponuje stejnými vlastnostmi, které jsou navíc podpořeny onou lehkostí materiálu.

V oblasti historie má jasan kořeny už ranných kulturách. Ve starověku se jednalo o velice běžné dřevo, které se používalo téměř pro každý záměr. Podobně jako buk má svou spiritualitu u Keltů, zde lidé věřili, že jasan vlastní schopnost uzdravení se a přinášení prosperity společnosti. (Vermont Woods Studios, © 2005-2021)

[^5]
2.1 .3 Somato vá úprava

U mnoha tkalcovských stavů na rámu nebo dokonce i maliřských stojanů se přiliš̌ nedbá na povrchovou úpravu a dřevo se ponechává v surovém stavu. Avšak ve většině případů je vhodné použít povrchové úpravy, která nejen ochrání produkt před vlhkostí, znečǐštěním nebo mechanickým a chemickým poškozením, ale také podpoří estetický výstup a krásu přírodního materiálu.
(Josten, Reiche, Wittchen, 2011, s 123)
Dnešní doba nabízí široký sortiment produktů určených pro povrchovou úpravu staletím ověřených principů po moderní výrobky. Základními typy povrchové úpravy se rozumí moření, lazurování a bělení.

Moření se v praxi využívá k podpoření vnějšího vzhledu dřeva, které není příliš výrazné svým přírodním odstínem, texturou či kresbou. Mořením se dosáhne zdůraznění krásy dřeva pomocí různých druhů mořidel (barevná mořidla, chemická, kombinovaná a substrátová).

Bělení se používá v případě vnesení života do starého kusu dřeva nebo úpravě poskvrněného povrchu. Bělení dosahuje zesvětlení dřeva aplikováním speciálního dvousložkového bělidla.

Lakováním se dosáhne ochrany dřeva před mechanickým a chemickým poškozením, zároveň podporuje přirozený půvab dřeva použitím transparentního matného nebo lesklého nátěru.

Ovšem nad volbou nátěru je zapotřebí přemýšlet již od samého počátku a ohled se klade zejména na charakter produktu a jeho využití v interiéru nebo exteriéru. Typy nátěrů lze dělit podle hustoty:

- Řídké (vosk, olej)
- Středně husté (několik vrstev jemného olejového nebo mikroporézního laku)
- Husté (polyuretanový lak, akrylový, epoxidový lak)
(Forrester, 2009, s. 174)
„Čistý včelí vosk je přírodním produktem, který poskytuje nádhernou povrchovou úpravu vybranému nábytku." (Corbett, 2001, s. 148) Použitím se zvýrazní přirozená kresba a textura dřeva. Naneštěstí je oproti ostatním nátěrům velmi málo trvanlivý a je zapotřebí výrobku věnovat pravidelnou údržbu, jestliže nebyla použitá další povrchová úprava (např. lakem).

Olejové nátěry jsou přírodním ochranným prostředkem, které chrání produkt před absorbováním vody. Olej dodává dřevu hřejivý odstín, kterým podtrhuje texturu a kresbu dřeva. Na rozdíl od vosku, trvanlivost oleje bývá dostačující bez dalšího zásahu. Nátěr se hodí zejména pro pórovité dřeva a dřeva, u kterých není záměr zakrýt přirozenou strukturu. (Forrester, 2009, s. 175)

Nitrocelulózové laky se využívají u předmětů a nábytku, který je středně zatěžován a denně namáhán. Jedná se o rychleschnoucí lak s výsledným jasným leskem. Lak se nabízí na vodní bází, který ztrácí na trvanlivosti a nedosahuje čistého lesku. Na druhé straně syntetické laky vydrží opravdu dlouho a v rámci estetické oblasti dosahují mnohem lepších výsledků. (Forrester, 2009, s. 175)

Polyuretanové laky disponují mimořádnou trvanlivostí, oblast použití nachází především u denně namáhaných předmětů a nábytku s vysokým zatížením, u kterých by obyčejné ošetření olejem nestačilo. Polyuretanovým lakem se rozumí syntetická pryskyřice, která se nabízí v lesklém, matném i saténovém provedení úpravy. Při aplikaci je nutné dbát na zdraví, poněvadž vznikají jedovaté výpary. Vyvarování se této skutečnosti je možné v případě výběru méně toxického laku. (Forrester, 2009, s. 175)

Rozdělením laků se zabývá Josten, Reiche, Wittchen (2011, str. 133) v následující tabulce.

Báze (filmotvorná látka)	Olejové laky	Bezolejové laky	Laky z umělých pryskyřic					
	Olejový lak Lak z alkydové pryskyřice	Nitrocelulózový lak $($ NC)	PVAC-lak Akrylový lak Fenol a melaminové prysky̌̌ice PUR lak Epoxidový lak Polyesterový lak (PE)					
Zpracování	Štětcem, stříkáním, máčením, poléváním, matováním			$	$	Vytvrzování	Oxidací	Fyzikální
:---	:---	:---						

Tabulka 1 Rozdělení laků

Kapitola obsahuje výběr principů spojování dřeva u tkalcovských stavů na rámu.

Spojouací
materiál

Dřevěné spoje jsou nedílnou součástí návrhu a výroby výrobku. Spoje zaručují spojení jednotlivých kusů dřeva nebo jiného materiálu v jeden funkční a tvarově spjatý předmět. Spojovacího materiálu a způsobu spojování je v současné době obrovský výběr (zde spadají hřebíky, šrouby, dřevěné kolíky, péra a lepidla, a způsoby spojování od fixačních principů až po lepení). (Josten, Reiche, Wittchen, 2011, s. 11) Dřevěné spoje se rozdělují dvou skupin:

- Nelepené spoje (vhodné při konstrukci rozebíratelného výrobku)
- Lepené spoje (využívají se v při kladení důrazu na pevnost, trvanlivost a nosnost)

Křižové přeplátované spoje se používají k vytvoření plynulého spojení dvou desek v jedné rovině. Spoj se skládá ze dvou desek, ze kterých byl odebrán kus materiálu (na základě hloubky a šíře desek), aby vznikla dosedací plocha spoje. Jakmile se obě desky spojí, vytvoří souvislý nerušený spoj. Při konstruování tkacího rámu lze tento princip využít bez následného lepení, je-li spoj dostatečně pevný a není třeba jej zpevnit dalším spojovacím materiálem.

Koncové přeplátování se skládá ze dvou dílů, které se vzájemně překrývají a vytvárí jeden roh. Oběma dílům je odebrán kus materiálu ve stejné části dílu, při spojení oba díly nahradí dříve odebraný materiál a vznikne spoj, který lze poté zpevnit dalším spojovacím materiálem. Princip koncového přeplátování se využívá u tkacího rámů například u spojení horního a spodního nosníku, které je nadále zesíleno lepidlem nebo kovovými spoji.

Středový spoj se zapuštěním celé tlouštky je dalším jednoduchým spojem, který spočívá ve spojení dvou dílů v pravém úhlu. Princip spočívá v odebrání materiálu jednoho dílu (na základě šířky a hloubky materiálu), aby vznikl žleb, do kterého se poté zasune druhá příčka. Spoj je vhodný zejména pro konstrukci knižního regálu. U tkacích rámů se občas používá v oblasti zavětrování nebo upevnění horního a dolního nosníku, zde je nutné počítat s výskytem dalšího spojovacího materiálu (lepidlo, hřebíky).

Spojení na čep rozpor je pevným rohovým spojem s širší škálou využití, jelikož je možné na tomto principu vytvořit rohový spoj i v jiném úhlu než pravoúhlém. Při výrobě tkacích rámů se vyskytuje u jednodušších variant, kde spojuje horní a spodní nosník s postranicemi.

Spojení průchozím čepem umožňuje velice pevný spoj, který vzniká vsunutím čepu do dlabu, který se poté dle potřebné pevnosti výrobku může i nemusí zpevnit lepidlem. U tkacích rámů se tento spoj vyskytuje například v oblasti zavětrování nebo pevného spoje nosníků.

Spojení neprůchozím čepem funguje na stejném principu jako spojení průchozím. Odlišuje se okem neviditelným spojem, který vzniká zasunutím čepu do připravené hloubky dlabu.

Tato kapitola se zabývá materiály tkacího příslušenství, které jsou tkalcům snadno dostupné.

Většina výrobců se pokouší při volbě materiálu člunků, tkací jehly a hřebenu šetřit. Jelikož nelze využít odpadního materiálu z výroby tkacího rámu (výjimkou jsou alternativní tkací rámy), nabízí se dvě $\underset{\substack{\text { Doplinkoug } \\ \text { material }}}{2.3}$ $\underset{\substack{\text { Doplinkoug } \\ \text { material }}}{2.3}$ $\underset{\substack{\text { Doplinkoug } \\ \text { material }}}{2.3}$ možná řešení: nechat kupujícího koupit si tkací pomůcky zvlášt́ od jiného výrobce nebo najít vhodný druhotný materiál a tkací rám nabízet jako set.

$$
\underset{\substack{\text { Doplnkiouy } \\ \text { material }}}{2.3}
$$

Pro jednoduchou výrobu tkacích pomůcek je potřeba pevného materiálu s rovným povrchem, přičemž favoritem současného trhu se stala cenově dostupná překližka.

Překližka patří mezí známé představitele kompozitních materiálů. Jedná se o konstrukční desky, které se vyrábějí z lichého počtu tří a více konstrukčních dýh ${ }^{12}$ lepených na sebe. Zpravidla, čím více vrstev dýh bude použito, tím větší pevnost a sílu překližka získá. „Částečně se tak kompenzují nedostatky a rozměrové limity masivního dřeva (především anizotropie, sesychání a bobtnání)."
(Kula a Ternaux, 2012, s. 196)
Ačkoliv se tlouštka dýh v jedné desce může měnit, vždy musí být dodržen vyvážený rád počtu od středové dýhy. Občas středovou dýhu nahrazuje kovová alternativa v rámci dosažení větší pevnosti.

Podle vnější vrstvy desky se určuje kvalita a vzhled překližky, proto se na svrchní vrstvu hodí zejména kvalitní dýhy z ušlechtilých dřevin, zatímco vnitřní část je vyplněna levnými dýhami. Například překližka z březového nebo bukového dřeva se považuje za velmi. kvalitní. Pro výrobu překližky z měkkých dřevin se využívá smrk, borovice a topol. K vnějsímu použití ve stavebnictví se využívá hlavně listnatých dřevin, které jsou lepené vodovzdorným lepidlem. (Corbett, 2001, s. 28)

Jakmile se technologie 3D tisku rozšírila a zprrístupnila každému individuálnímu výrobci, netrvalo dlouho a začaly se vyrábět tkací pomůcky jednoduchých i složitějších tvarů tištěné na 3D tiskárně. 3D tisk se stal v této oblasti atraktivním především díky pestré barevné paletě, kterou plasty nabízí a relativně levné výrobě (avšak časově náročné).

[^6]3D tisk neboli aditivní výrobní proces spočívá v přenosu digitálních dat do trojrozměrného modelu. Model se vytvárí postupným přidáváním vrstev materiálu, ve výsledku nevzniká mnoho odpadu. Což je zásadní rozdíl vedle subtraktivního výrobního procesu, kde trojrozměrný objekt vzniká odebíráním materiálu.

Velkou výhodou 3D tisku je levná výroba, vytváření komplikovaných tvarů a spotřeby malého množství materiálu než ostatní výrobní metody. Obrovskou nevýhodou, kterou nelze přiliš ovlivnit, je časová náročnost samotného tisku, který se může odvíjet od pár minut po pár hodin nebo dní. Proto se 3 D tisk používá především při rychlém vytváření prototypů, které mají počátek už od konce 70. let. K modelování digitálního objektu se využívá mnoho různých softwarových programů, ale domácí kutilové s vášní pro tuto technologii nebo architekti, interiéroví designéři mají možnost využívat i internetových úložišt́, odkud se 3D modely dají rychle stáhnout nebo koupit.

2.3 .3 Recyklace

Začínajícího tkalce lze poznat velmi snadno. Učí se tkát na papírovém tkacím rámu nebo si při tkaní pomáhá gobelínovou jehlou, starým umělým hřebenem „se zuby" na vlasy nebo jídelní vidličkou. Ideálně ze staršího jídelního servisu, kdy vidličky byly opravdu velké. Ačkoliv si se sebou nese tento způsob nahrazení běžných pomůcek ohlasy a spokojenost, začátečníci si neuvědomují, že se správnými pomůckami docílí lepších výsledků, které zrychlí a rozšírí tkalcovu produktivitu.

Tato kapitola se zabývá stručným pochopením výrobních procesů, které velice usnadňují výrobu tkalcovských stavů na rámu. Nejen dřevo, ale každý materiál lze dělit různými způsoby: řezáním, stříháním nebo lámáním na kusy dle potřeby výroby.

Frézování je subtraktivní výrobní proces, při kterém dochází k mechanickému odebírání materiálu z obrobku působením řezných nástrojů. Fréza při práci rotuje kolem své osy a tvaruje obrobek. Mnoho takových strojů je dnes již rízeno počítačem a jedná se o CNC stroje. K práci s CNC stroji se používá frézovací software CAD, ve kterém vznikají první návrhy. V CAD začíná proces kresbou tvaru nutného ke frézování nebo vymodelováním trojrozměrného objektu. Poté se hotový návrh exportuje pomocí softwaru CAM do formátu, který je kompatibilní s CNC strojem. Ten po načtení dat započne proces frézování, přičemž určuje a provádí přesné pohyby podle různých cest a os na základě návrhu. Frézování je vhodné pro výrobu díl̊ s nároky na přesnost, jednotlivé kusy a malé série z řady různých materiálů: např. plast, dřevo, kov. (mfeng, © 2021)

Řezání laserem je dalším subtraktivním výrobním procesem, při kterém dochází k odebírání materiálu - řezání a gravírování. Technologie se používá k mnoha účelům, řezání je nejvíce častým využitím laseru, které se používá k dělení plastu, dřeva, lepenky, plechu a mnoha dalších materiálů. Princip řezání spočívá v tepelném působení laserového paprsku, který se zaměřuje na malou lokalizovanou oblast s dostatečnou hustotou energie, na které dochází k rychlému zahřátí a odpaření materiálu (dochází k dělení). Řezání laserem je rychlé a velmi přesné s minimální deformací materiálu, jelikož cesta, kterou laser kopíruje, má sílu tahu přibližně $0,5 \mathrm{~mm}$. Z toho vyplývá, že laser umožňuje řezání komplikovaných tvarů, které by ostatními technikami a technologiemi nebylo příliš snadné nebo možné docílit. (Kula a Ternaux, 2012, s. 242)

Laserové řezání je účinným pomocníkem v mnoha nejen průmyslových odvětvích, kde se klade důraz na přesný řez, rychlost výroby a úsporu materiálu (například v lékařství).

Na současném trhu lze vybírat z širokého sortimentu tkalcovských stavů pro ruční tkaní lišící se zejména velikostí a typem stavů. Mezi začátečníky a příležitostnými tkalci jsou nejpopulárnější a nejrozšířenější stavy na rámu vertikálního a horizontálního typu. (dumpodjasanem, © 2001)
„Firma Melissa \& Doug je významný americký výrobce hraček pro děti s originálním designem s více než dvacetiletou tradicí." (modroocko, © 2014-2021)

Obr. 7 Tkalcovský stav značky Mellisa \& Doug

V jejich širokém sortimentu se nachází hračky všeho druhu. Značka si dává záležet na výrobě hraček pro vzdělávací aktivity, rozvíjení jemné motoriky, včetně výroby dřevěných hlavolamů a řemeslných výrobků z kvalitních materiálů. Tkalcovský stav této značky zaujme svou jednoduchou konstrukcí a na první pohled snadným používáním. Stav je vybavený nastavitelným rámem, který lze dle potřeby velice snadno rozložit a změnit výšku pracovní plochy, na které se natahuje osnova. Ačkoliv je stav určený především pro děti, tak i v tomto malém měřítku nabízí škálu možností na rozvíjení kreativity. Je možné na stavu tkát například vlastní umělecké dílo, pouzdra nebo kabelku. (mellisaanddoug, © 2021)

Obr. 8 Detail natahování osnovy

Obr. 9 Tkalcovský stav značky Beka

Za firmou Beka stojí rodinná dílna specializující se na výrobu dřevěných tkalcovských stavů, hraček a nábytku již více než 45 let v USA. Vysoce kvalitní výrobky ze dřeva vznikají přímo v jejich rodinné dílně v Minnesotě a jejich stěžejním cílem je vyvíjení nových tkalcovských stavů určených pro ruční tkaní. (beka, © 2021)

Tkalcovský stav The Deluxe uspokojí očekávání nejen začátečníků ale i zkušenějsích tkalců. Stav se vyznačuje svým robustním vzhledem s použitím světlého javorového dřeva. Zajímavým prvkem je použití silného plastového materiálu v oblasti nosníku pro natažení osnovy. Pohodlný proces tkaní zajištuje nastavitelný úhel rámu pomocí dřevěných opěr stojanu, které lze také sklopit do původní polohy a tkát prakticky kdekoliv i ve svém klíně. Velkou výhodou je snadná montáž, flexibilita, lehkost a možnost rychlého přenosu nebo transportu. Stav je součásti sady, včetně pár pomůcek k usnadnění tkaní. Sada obsahuje tkalcovský stav, člunek o velikosti šíre samotného stavu a tkací jehly. (beka, © 2021)

Obr. 10 Detail plastového prvku nosníku

The Grizzly je dalším tkalcovským stavem, který vznikl pod záštitou firmy Beka. V rámci designu se i zde snažili o robustní vzhled a zároveň zachovat lehkost a flexibilitu. Stav je ručně vyráběný z tvrdého javorového dřeva a je ideální pro tkaní tapisérií, koberců či tkaných látek. Konstrukce byla navržena, aby se přizpůsobila tkalci a u stavu bylo možné nejen sedět na zemi, ale i stát nebo sedět na židli. Praktickou a flexibilní stránku si stav zasluhuje zejména pro možnost nastavitelnosti stavu do tří výškových variant dle potřeb tkalce. (beka, © 2021)

Obr. 11 Poloha č. 1, The Grizzly

Obr. 12 Poloha č. 2

Obr. 13 Poloha č. 3

Firma Ashford Handicrafts Ltd patří mezi světově uznávanou značku v oblasti výroby tkalcovských stavů a textilního vybavení. Na trhu se pohybují více než 80 let a ve svém sortimentu nabízí kolovraty, tkací a mykací stroje, včetně tkalcovských stavů. Všechny produkty firmy jsou výsledkem vývoje, stálé komunikace se zákazníky a bohatými zkušenostmi. Pro zachování důvěry hodnosti a kvality značky používají při výrobě pouze kvalitní bukové dřevo z Nového Zélandu. Z výrobního hlediska dbají na jednoduchost, snadnou montáž a zábavu řemesla. Svou práci prezentují s heslem „Užívejte radosti a potěšení z tvorby svých vlastních jedinečných přízí, látek, oděvů a domácích potřeb pomocí našich kolovratů a tkalcovských stavů. Relaxujte s vědomím, že Vaše řemesla jsou udržitelná, obnovitelná, a především šetrná k životnímu prostředí. "13 (ashford, © 2021)

Vertikální tkalcovský stav od značky Ashford vyniká jednoduchým složením a snadnou prací díky otočnému rámu a možností nastavit potřebné napětí osnovy. Nastavit lze také výšku a úhel podle potřeb tkalce k pohodlnému procesu tkaní. Stav je určený zejména pro tkaní koberců, tapiserií a větších kusů tkané látky k následnému oděvnímu zpracování. Na rozdíl od dnes běžně používaných zařízení pro vytvoření prošlupu u ručních tkalcovských stavů, tento stav je vybavený nitěnkou, stejně jako v období starověku. (ashford, © 2021)

Obr. 14 Vertikální stav značky Ashford

[^7]

Obr. 15 Horizontální stav studia Koekoek

Studio Koekoek pochází z Nizozemí, kde se v samotném srdci Amsterdamu pokouší učinit svět veselejším místem svými ručně dělanými textilními výrobky. Ve svém sortimentu nabízí vlastní autorské vzory vyšívané pomocí rámečku nebo vyšívacího kruhu, pomůcky a příslušenství ke tkaní, vyšívání, háčkování a pletení. Ačkoliv se jedná o malou firmu, je jednou z prvních, která nabízí ekologicky certifikované tkaniny. (studio-koekoek, © 2021)

V rámci tkaní na rámu se vyrábí jeden model horizontálního tkalcovského stavu z tvrdého bukového dřeva v různých velikostních provedeních. Hlavní cílovou skupinou jsou děti, začátečníci, případně studenti a příležitostní tkalci s ne přiliš velkými nároky. Na obrázku číslo 15 je zobrazen tento tkalcovský stav čistě z přírodního dřeva s pomůckami ke tkaní v moderní dnes běžně dostupné podobě. Horní a spodní nosník je opatřen kř̌ídlovou maticí, která umožňuje napínání nebo rozvolnění osnovy při práci, což se cení obzvlášt́ u stavů větších rozměrů, kde uvolnění osnovy hrozí nejvíce. Stavy této jednoduché konstrukce nebývají příliš náročné prostor a velmi se hodí zejména k práci na cestách, v přírodě či na dovolené. Velkou oblibu nachází především v okruhu dětí, ve výtvarné výchově na školách, na dětských táborech a na workshopech o tkaní na rámu. Obsahem takových workshopů bývá často běžné tkaní v různých vazbách, tkaní obrazců, tapisérií nebo drobných doplňků (například tkaná kabelka v bohémském stylu).

Továrna sídlí v Boulderu v Coloradu na pozemku, který zaměstnanci vnímají a opatrují jako venkovský ranč, na kterém ve svém volném čase obědvají, pečují o slepice nebo zahradničí. Společnost se snaží ve všech směrech splynout s prrírodou a s udržitelnými tradicemi, které vedly k navržení prvního tkalcovského stavu a vzniku samotné továrny. Na trhu působí již více než 50 . let, jejich počátek začal během hnutí back-to-the-land ${ }^{14}$, které vedlo k navrácení ke kořenům, obnovení tradičních řemesel a farmaření. (schacht spindle, © 2021)

Z široké nabídky produktů patří mezi nejoblíbenější mezi tkalci malý stav s názvem Easel Weaver, který je navržen pro podmínky při cestování s jedinečnou funkcí postavit rám na stůl v rámci lepšího držení těla při tkaní. Rám na první pohled zaujme svou netradiční konstrukcí a skrytou opěrou, která umožňuje rám postavit do vertikální polohy v případě potřeb tkalce. Tato funkce byla očividně inspirována malířským stojanem, aby se rám mohl využívat i jako dekorační prvek. Plastové části nosníků a javorová překližka podtrhují jemnou elegantní podobu, a pohodlí při tkaní v horizontální poloze zajištují protiskluzové prvky v jednotlivých rozích rámu. Součástí sady jsou i základní pomůcky, tkací jehla, člunek a hřeben, dřevěný materiál nahradil plast.

Obr. 16 Rozložený a složený rám Easel Weaver

[^8]

Obr. 17 Rám v základní poloze

Louet je další holandskou společností, která se zrodila v 80 . letech. V tomto období v Nizozemí vysoce rostl zájem o předení na kolovratu a první kolovrat této dnes světově uznávané společnosti vzbudil veliký zájem i u lidí bez zkušeností s předením. Postupem času se rozšiřoval sortiment, vznikl jejich první tkalcovský stav na rámu (v roce 2003 byl vyřazen z prodeje, ale vychází z něj současné rámy této společnosti), stolní, mechanické stavy a samozřejmě také příslušenství k většině produktů. (louët, © 2021)

Lisa je současně jediným tkalcovským stavem na rámu, který společnost nabízí. Svou nevšední konstrukcí postranních nohou s využitím kulatin se odlišuje od ostatních rámů na trhu a jednoduchým principem lze s rámem manipulovat. Horní a spodní nosník je možné podle libosti po celé délce snadně posouvat a měnit tak délku osnovy bez větší námahy. Rám se nabízí ve čtyřech velikostech a u rámů větších rozměrů se využívá alternativních prvků na nosnících pro natažení osnovy.

Obr. 18 Lisa v základní velikosti
Obr. 19 Lisa se zuby z alternativního materiálu

Vedle vertikálních stavů na rámu The Deluxe a The Grizzly, Beka nabízí i horizontální stavy ve velikosti 14 a 20 palců. Jsou typické svou na první pohled křehkou konstrukcí, jednoduchou montáží a využití PVC materiálu v oblasti nosníků. Křehký vzhled podporuje také použití světlého javorového dřeva. (beka, © 2021)

Obr. 21 Detail

Za projektem CraftWoodGoods ${ }^{15}$ stojí partneři Artem a Kseniya, kteří prostřednictvím hledání moderních řešení výroby a nových materiálů, se pokouší oslovit skupinu lidís oblibou v tradičních řemeslech. (etsy, © 2021)

Projekt se zabývá zejména textilními technikami jako je tkaní na tkalcovském stavu nebo na karetkových ${ }^{16}$ destičkách. Při výrobě využívají přírodního dřeva, překližky a 3D tisku.

[^9]

Obr. 22 Tkací rám a pomůcky s využitím 3D tisku
Obr. 23 Barevné variace hřebenu
„Rám je nejzákladnější pomůckou pro tkaní. Ke zhotovení rámu nám postačí čtyři lišty. Koupit se dají v potřebách pro výtvarníky (malǐrí je používají na napnutí plátna). Popřípadě postačíi i starý rám od obrazu." (Arsenjevová, Wolfová, 2005, str. 19)

Nejlevnějším a nejjednodušším způsobem, jak začít tkát co nejrychleji, není okamžité zakoupení tkalcovského stavu bez znalostí samotného tkaní, ale většina začátečníků nebo odvážlivců, kteří si chtějí techniku tkaní vyzkoušet, si svůj první tkací rám vyrobí sami doma z recyklovaných materiálů. Například drobnou kabelku nebo peněženku lze utkat pomocí kusu tvrdého kartónu, do kterých se vyřežou nebo vystřihnou zuby pro natažení osnovy. Z tohoto důvodu se na
trhu objevují i velmi primitivní, recyklované a strojově velmi snadno vyrobitelné tkací rámy pro děti a začínající tkalce.

V širokém sortimentu Studia Koekek lze nalézt malý obyčejný tkací rám z pevné bílé lepenky, určený především pro děti a k vyplnění zábavy na oslavách nebo při cestování. Ke tkaní je nutné mít tkací nebo tupou gobelínovou jehlu, aby mohly vzniknout zajímavé tapisérie. Uplatnění tento tkací rám nalezne nejčastěji na nízkorozpočtových workshopech, kde se často používá k učení různých vazeb tkanin.

Obr. 24 Tkací rám z lepenky

Obr. 25 Tkací rám z plastové desky

Obdobný design vycházející z kartonového tkacího rámu využívá i společnost Schacht Spindle, která přinesla na trh desku z odolného plastu, do které byly vyfrézovány zuby, horní část desky byla ohnuta z hlediska lepší stability a pevného napětí osnovy včetně snazšího provlékání útku osnovou.

Internetová tržiště podporují mnoho rukodělných výtvarníků, tento projekt se zabývá textilními tvorbou a ve své nabídce nabízí rychle a snadno složitelný tkací rám z březové překližky vyřezané za pomocí laseru.

Rozložený tkací rám
Obr. 27 Složený tkací rám

Francouzská značka podporuje kreativní myšlení a rukodělné koníčky z oblasti tkaní, pletení a vyšívání. Tkací rám včetně příslušenství, se kterým značka přišla na trh, je zhotovený z čiré polymetylmetakrylátove ${ }^{17}$ desky.

Za projektem stojí mladá řecká architektka s vášní pro přírodní materiály a bohémský ${ }^{18}$ styl. S využitím běžně dostupných nebo recyklovaných materiálů byl navržen jednoduchý rám z bukových kulatin spojených v rozích měděnými spoji. Kombinace kovu a dřeva vytváří elegantní moderní řešení, ale k běžnému tkaní se příliš nehodí kvůli ztráty kontroly nad napětím a pohybem osnovy. Přesto jej lze ale využít ke tkaní drobné tapiserie, a i s rámem použít finální výstup jako dekoraci bytu.

Obr. 29 Tkací rám v kombinaci dřeva a kovu

[^10]
04.

Inspirace

Tato kapitola se věnuje inspiračním zdrojům a archeologickým nálezům z období Velkomoravské ríše. Inspiraci čerpám z výtvarných řemesel, především mě zaujalo tvarosloví tvorby klenotnických dílen, které je typické svou bohatostí na tvary a dekorativnost. Umělecká tvorba tohoto období je stěžejní pro proces navrhování v praktické části práce.
„Velkomoravským obdobím v našich zemích začínají dějiny středověkého umění. Tehdy byl zahájen už nikdy zcela nepřerušený proces výtvarného vývoje, jehož hlavním nositelem byl slovanský lid, z něhož se nakonec vyvinul český a slovenský národ." (Benda, 1978, s. 161)

Vznik Velkomoravské říše se datuje do 9 . století, když během vlády moravského knižete Mojmíra došlo ke sloučení Moravského a Nitranského knížectví. Vavřínek (moraviamagna, © 2001) ve svém článku uvádí, že se jednalo o počátek prvního státního útvaru západních Slovanů na současném území České a Slovenské republiky severně od řeky Dunaj. Avšak za vlády Svatopluka dosáhla Velkomoravská ríše ve svém vrcholném období největšího územního rozkvětu a svým územím zasahovala do oblasti současného jihovýchodního Německa, jižního Polska, Horního a Dolního Rakouska, Rumunska a Madarska (mince-cnb, © 2003-2021).

V polovině 11. století již zaniklé knižectví poprvé získalo dnes obecně používaný název Velká Morava. „Velká Morava je tradiční označení, převzaté od Konstantina Porfyrogeneta, který jím ovšem nepoukazoval ani na její rozlohu, ani na moc, v dějepisectví se však právem vžilo právě v tomto smyslu". (Třeštík, 1997, s. 263) Třeštík (2001, s. 11) zároveň ve svém dalším díle upozorňuje, že prameny ohledně výzkumu období Velké Moravy jsou částečně omezené, což má občas za následek více nedoložených domněnek. K dohledání je například více autorů i zdrojů, které uvádějí mylné důvody pro označení „Velká" Morava.

Hlavními centry obchodu, vzdělání a řemeslné výroby byly opevněné hradiště dnes známé jako Staré Město u Uherského Hradiště, Valy u Mikulčic nebo Nitra. Ačkoliv Moravské knížectví nevydrželo dlouho ${ }^{19}$, i během své krátké doby se Velká Morava stala vyspělou civilizací, která ve svém vývoji předstihla svou dobu o pár set let. V průběhu období se nejvíce rozvinulo kovářství, hrnčířství, tkalcovství, kamenictví, kovolitectví, tesařství a nezaměnitelné šperkařství. (Kouřil, 2014, s. 103)

[^11]Ačkoliv se z 9. století na našem území nezachovalo mnoho nálezů tkanin, a tudíz ani tkaných vzorů, můžeme pouze hádat, že se příliš nelišily od skandinávských tkanin (stejná časová periodizace) z území dnešního Dánska. Na druhou stranu různé příklady šperkařství a klenotnictví z období Velké Moravy můžeme dnes vidět vystavené v muzeích nebo na dočasných výstavách, které byly nalezeny v raně středověkých pohřebištích. Zesnulí byli pohřbívání s osobní výbavou dekorativních i běžných předmětů. Kouřil (2013, s. 127) ve svém díle uvádí, že šperk patří mezi artefakty, které se na pohřebních nalezištích často zachovaly ve velkém počtu. Jednalo se zejména o výrobky řemeslných dílen v podobě náušnic, náhrdelníků, náramků a gombíků ${ }^{20}$. Mnohé jsou dokonce i dnes stále rekonstruovány jako neobvyklé, přesto krásné módní doplňky, také jsou středem zájmu skupiny lidí zabývajících se živou rekonstrukcí tehdejšího života Velkomoravanů.
„Velkomoravské umění jako celek je nepochybné středověké, avšak bezprostředně vyrůstá z výtvarného života pozdní antiky. Je s to poskytnout i obecnější poučení: přispívá totiž ke konkrétnímu poznání způsobu proměny ještě antické kvality již ve kvalitu středověkou, např. v rostlinném ornamentu" (Benda, 1978, s. 161)

Na počátku 9. století byli velkomoravští mistři ovlivněni byzantským a antickým umění, které se velmi odráželo obzvláště ve šperkařských dílnách. Používanými materiály byly drahé kovy jako zlato a stříbro (hlavně u vyšších vrstev), ale mnoho nálezů potvrdilo i výrobu z různých druhů mědi a bronzu, velmi zřídka se zachovaly šperky zhotovené z olova nebo železa. Avšak právě kvůli používání drahých kovů si vědci kladli otázku, odkud velkomoravští řemeslníci získali stříbro a zlato, a zdali se nejednalo o dovoz šperků od samotných byzantských klenotníků. Později domněnku vyvrátily nové výzkumy a nálezy, které dokázaly původ šperků z moravských klenotnických dílen velkomoravských hradů a podhradí (Kouřil, 2014, s. 124). Šperkařství v průběhu období vyspělo a vyvinulo se v jeden z charakteristických symbolů a přínosů Velké Moravy. Podle původu výskytu šperky nesou název „šperk staroměstského, častěji formulováno jako šperk veligradského ${ }^{21}$ typu". Veligradské šperky byly na první pohled bohaté a luxusní, na druhou stranu nový název také dostaly šperky podunajského typu, které jsou oproti veligradskému typu jednoduché. Naneštěstí umění zaniklo spolu s obdobím Velké Moravy a nadále se nevyvijelo.
${ }^{20}$ Gombíkem se rozumí dekorativní knoflík nebo spona, která slouží k upínání oděvu.
${ }^{21}$ Veligrad bylo hlavním městem Velkomoravské ríše, kde se ale bájné město nacházelo nám dosud není známo.

M18
bronz

Obr. 30 Nálezy ženských šperků podunajského typu z Mohylového pohřebiště ve Stěbořicích ${ }^{22}$

[^12]

Obr. 31 Běžné předměty, se kterými byli zesnulí pohřbeni. $A=$ náušnice a korálky, $B=$ gombíky a spony

Obr. 32 Grafické ztvárnění gombíků ze zlata a střibra

Následující obrazové ukázky obsahují nálezy náušnic veligradského typu, které se dále rozlišují na bubínkové, hrozničkové, košičkové, sloupečkové a lunicovité. (Kouřil, 2014, s. 127-132)

Obr. 33 Masivní bubínkové náušnice ze zlata
Obr. 34 Zlaté hrozničkové náušnice

Obr. 35 Košičkové náušnice, mistrovská řemeslná práce Obr. 36 Lunicovité náušnice s řetízky

Obr. 37 Zlaté náušnice s úzkou lunicí
Obr. 38 Pozlacené sloupečkové náušnice s bubínky

Prak-

ticleá

část

05. Cíl práce

Od samého počátku bylo cílem bakalářské práce navrhnutí a realizace tkalcovského stavu na rámu určeného do moderního interiéru. Návrh vychází ze získaných poznatků z rešerše tkacích rámů na současném trhu, uživatelského výzkumu, konceptu a inspiračních zdrojů.

Základním bodem konceptu této práce bylo přizpůsobení tkalcovského stavu do běžného interiéru, aniž by bylo nutné jej schovávat kvůli narušení estetického rozložení prostoru. Většina produktů tohoto typu na aktuálním trhu jsou masivního vzhledu bez špetky elegance, která by povznesla hodnotu stavu. Ve svém návrhu se pokouším produkt podpořit hravým řešením s použitím alternativního materiálu, který nahradí složitě vyráběné části, ale zároveň ponechá finálnímu produktu dojem krásy tradičního řemesla.

Dříve než se zrodila idea návrhu vlastního tkalcovského stavu, bylo rozhodnuto, že práce se bude zabývat nebo alespoň vycházet z uměleckořemeslné tvorby období Velké Moravy. Téma se zajímavou myšlenkou bylo zvoleno na základě vlastního zájmu o dané historické období z hlediska volně tráveného času rekonstrukcí tamního stř̌edověkého života na našem území a zaujetím umělecké tvorby tehdejších řemeslníků.

Důraz byl kladen na hravou formu šperků, především náušnic, ladných přesto dekorativních tvarů, které jsem ve fázi skicování a hledání správného tvaru zjednodušovala a rozvíjela do modernějšího vzezření různých vzorů, aby byla podpořena estetická strana produktu.

Před začátkem procesu navrhování bylo nutné vyjasnit, kam má návrh směrovat a jakou cestou se vydat. Na základě idey konceptu a inspiračních zdrojů byly vytýčeny požadavky:

- Jednoduchost
- Funkčnost
- Hravost a elegance
- Variabilita

06.

Proces

naurhouání

Jakmile bylo nastíněno téma, koncept a inspirace, bylo na čase se přesunout k procesu navrhování, které vycházelo z daných požadavků a postupně se vyvíjelo k finálnímu řešení. První část kapitoly je věnována podrobnějšímu seznámení se s procesem navrhování konstrukce, zatímco druhá část se zabývá navrhováním alternativních prvků, ve kterých se nejvíce projevuje inspirace uměleckou tvorbou 9. století.

První fázi při navrhování obvykle značí skicování, při kterém dochází k přesunu různých myšlenek na papír a jejich následnému roztřídění a analýze. Původní skici se striktně držely jednoduché formy a skladby, aniž by bylo nutné využití lepených spojů. Avšak po konzultaci s vedoucím práce a důkladnější rešerši se od návrhu opustilo, nebot nesplňoval požadavky, které byly k tématu dříve určeny. Po prvním nezdaru poté vzniklo velké množství skic, ve kterých se začal objevovat alternativní materiál, což mě přivedlo k opuštění tradiční dřevěné konstrukce a vyvíjení nového konceptu se zajímavým záměrem.

Obr. 39 Skici č. 1
Obr. 40 Skici č. 2

Ze začátku se ve skicách objevoval tkací rám bez opěrných prvků, který by bylo nutné mít při tkaní opřený o rovný povrch (např. stě$\mathrm{nu})$. Z onoho důvodu se začal ve skicách častěji vyskytovat tkací rám s vlastními podpěrami, a tudíž se na základě důkladné rešerše téma práce zaměřilo pouze na vertikální tkalcovský stav na rámu s pevnou základnou.

U prvního návrhu (obr. 40-41) s využitím alternativních prvků bylo zamýšleno využití rohových spojů z kovového nebo umělého materiálu, do kterých by se dřevěné díly zasouvaly a připevnily pomocí dřevěných kolíčků. Prodloužené rohové spoje ve spodní části měly nabízet funkci snížení pracovní plochy (délku osnovy) a ušetření textilního materiálu, což bylo stěžejní myšlenkou. Návrh se ale neukázal být vhodný k dalšímu vývoji a realizaci, poněvadž by sebou nesl vysoké výrobní náklady spojů, které by měly konstrukci primárně zjednodušit. Ačkoliv se návrh dále nerozvíjel, koncept a idea byla přenesena do dalších skic.

S ohledem na tvarování tkacího příslušenství inspirovaného historickým obdobím, které bude patřit k doplňkům setu tkalcovského stavu bylo zapotřebí přizpůsobit i tvar konstrukce tkacího rámu k tvarové jednotě. Během dalšího skicování byl tedy kladen důraz na ladné tvary. Konstrukce byla následovně zaměněna za jeden zaoblený bod (pohled z profilu), který zároveň plní i funkci podpěry. Návrh si také zachoval ideu přizpůsobení si tkací plochy z předešlého řešení.

Obr. 41 Vizualizace skici prvniho návrhu

Obr. 42 Inspirační zdroje jsou především oblého tvarování

U druhého návrhu (obr. 43) si lze všimnout, že ačkoliv byly rohové spoje (obr. 41) zaměněny za rovné pláty po celé šířce rámu, stále se zde uplatňuje připevnění pomocí kolíčků/šroubků při manipulaci s nastavením výšky tkací plochy. Avšak přítomnost nepříliš pevného spojení postranních nohou, vedla k další fázi vývoje.

Obr. 44 Vizualizace třetího návrhu

Třetí návrh úzce vychází z chyb a poznatků předešlých skic. Hlavní myšlenkou bylo zachování oblé konstrukce druhého návrhu a funkce přizpůsobení si vy̌šky tkací plochy, zatímco jednoduchou konstrukci doplňují barevné prvky z alternativního materiálu, které plní funkci správného natažení osnovy. V této fázi produkt začíná působit sebevědomým dojmem a na základě čisté a jednoduché konstrukce, bylo rozhodnuto jej dále vyvíjet se soustředěním se na barevné prvky, jejich tvarové variace a volbu materiálu.

Jakmile skicování určilo směr, kterým se vydat, postupně se myšlenka začala přenášet z papíru do digitálního prostředí pomocí 3 D modelovacích softwarů. Vytvoření vizualizace trojrozměrného projektu je velmi užitečná při ověřování parametrů a stavby objektu. Osobně začínám vždy s modelováním v softwaru Adobe Illustrator, ve kterém se připraví parametry jednotlivých dílů, nakreslí složité tvary křivek a následně se soubor exportuje do formátu kompatibilního $s 3 D$ softwarem, ve kterém se 2D ilustrace převede do trojrozměrného objektu.

Obr. 46 Exportování křivek do Cinema 4D

Při tvorbě první vizualizace se hned na počátku ukázalo, že bude nutné lépe zpracovat rozměry jednotlivých dílů. Na obrázku č. 35 byla na postranní nohy použitá deska o hloubce 25 mm a na horní a spodní nosník byl použitý hranol s rozměry $35 \times 35 \mathrm{~mm}$ v profilu. Ačkoliv na papíře působily rozměry vyváženě a dostatečně lehce, vizualizace ukázala, že tomu tak není. Světlé dřevo sice podporuje lehké ztvárnění produktu, ale ve skutečnosti je velmi masivní a při realizaci by produkt velice nabyl na váze. Řešení problému spočívalo bud’ ve změně základních rozměrů produktu nebo volby užšího materiálu. Protože změnění parametrů, a tudíž i tkací plochy nepřipadalo v úvahu, rozhodla jsem se konstrukci zeštíhlit.

Abych předešla dalším překvapením, nové rozměry produktu byly současně s tvorbou 3D modelu otestovány na papírovém modelu v měřítku 1:1. Síla postranních nohou se zúžila z 25 mm na pouhých 18 mm , ale velice prospěla estetické povaze produktu a neomezila funkčnost konstrukce. Zároveň při testování nových technických změn, byla konstrukce podpořena dvěmi zavětrováními, aby se při uvolnění horního a spodního nosníku produkt sám nepohyboval. Avšak po konzultaci a dalším testováním bylo ověřeno, že k funkčnímu návrhu postačí pouze jedno zavětrování v třetině výšky produktu.

Obr. 47 První vizualizace na počátku vývoje

Od úplného počátku navrhování bylo počítáno s rozměry, které vychází z důkladné rešerše, která ukázala, že většina pokročilejších př́ležitostných tkalců preferuje tkalcovské stavy střední velikosti. Střední velikostí se rozumí pracovní (tkací) plocha o šírí 500 mm a výšce alespoň 600 mm , což je ideální varianta pro tkaní v domácích podmínkách.

Obr. 48 Vizualizace konstrukce ve fázi před zásahem alternativních prvků

Obr. 49 Umistění nosniků a zavětrování

Obr. 50 Pohled z profilu

Funkce přizpůsobení si výšky pracovní plochy spočívá v posouvání horního nosníku po ose otvorů (obr. 50) na postranních nohách. Pracovní plochu lze tak snízit až o 200 mm , což je bonusovou hodnotou, poněvadž tím tkadlec může ušetřit mnoho textilního materiálu a tím redukovat odpadový materiál. Otvory zároveň slouží k rotaci nosníku, ke kterému dochází v případě, že se uvolní napnutí osnovy a je nutné napnutí opět obnovit.

Abych docílila svého primárního cíle zapojit inspirační zdroje z Velké Moravy do návrhu tkalcovského stavu, v průběhu semestru vznikaly různé skici vzorů a tvarů vycházející z designu šperků zmíněného období. Na počátku skicování docházelo k jednoduchému překreslování archeologických nálezů, při kterém jsem se pokoušela osvojit si kresebný styl, který bych poté mohla aplikovat na alternativní díly produktu a příslušenství.

Zpočátku vznikaly návrhy rozmanitých tvarů, které jsem se nadále pokoušela rozvíjet, zjednodušit a vložit do nich moderního ducha. V následujících obrazových příkladech lze vidět, jakým způsobem vznikaly jednotlivé vzory, které byly následovně vyfrézovány na alternativní materiál a aplikovány na konstrukci produktu.

Vývoj detailů konstrukee

Obr. 51 Vývoj návrhu vzoru č. 1

Can arow (1)wowif

Obr. 53 Vývoj návrhu vzoru č. 2

Obr. 54 Vývoj návrhu vzoru č. 3

88 curn

Obr. 52 Aplikace návrhu č. 1 na produkt

Jednotlivé návrhy vychází z tvarů různých typů náušnic od bubínkových, přes hrozničkové, sloupečkové až po lunicovité, které byly následně převedeny do různorodých vzorů a aplikovány do konstrukce tkalcovského stavu.

Po dokončení procesu skicování byly vybrány nejzajímavější vzory a následovně byly aplikovány na horní a spodní nosník tkalcovského stavu, kde plní funkci při natahování osnovy mezi vyfrézovanými zuby.

V rámci pevného natažení a upevnění osnovy při tkaní jsou zuby z alternativního materiálu o tlouštcice 3 mm mírně zahnuté o 15 stupňů (obr. 55-56).

Obr. 55 Přední pohled Obr. 56 Pohled ze strany

Po definování všech dílů konstrukce, jsem se začala zabývat spojovacím materiálem - především maticemi. Od počátku se v návrzích i vizualizacích vyskytovaly klasické křídlové matice, které sice výrazně nenarušovaly estetickou formu produktu, ale ani ji nepodporovaly. Z tohoto důvodu byla kladena otázka „jestli nepoužít matice plastové". Naneštěstí plastové matice zajímavých tvarů, které se na trhu současně nachází, nebyly vhodnou alternativou, nebot́ matice o průměru závitu 8 mm působily společně s tkacím rámem velmi rozpačitým dojmem a oproti samotnému dřevu byly dominantním masivním prvkem.

Vhodnou alternativou se nabízel 3D tisk, ačkoliv snaha vyhnout se této technologii byla do této chvíle vytrvalá. Avšak v případě drobných matic učiním výjimku, protože výrobou drobných autorských součástek v různých barvách mohu jenom podpořit jednotný vizuální styl alternativních materiálů, aniž by vnější vzhled produktu narušoval nový kovový prvek.

Obr. 59 Návrh matice č. 1

Obr. 60 Návrh matice č. 2

Obr. 61 Návrh matice č. 3

Obsahem této podkapitoly je stejně jako u nosníků konstrukce stěžejní myšlenkou inspirace uměleckým řemeslem 9. století. Příslušenství neboli tkací pomůcky jsou důležitým bodem při tkaní na rámu. Ačkoliv lze tkát i bez použití jakýchkoliv pomůcek, s nimi je tkaní mnohem zábavnější formou trávení volného času, a především více produktivní, jelikož techniku tkaní velmi usnadňují a urychlují.

V rámci udržení tvarové jednoty, design pomůcek vychází z již dříve navrhnutých vzorů (obr. 51-54). Důvodem je estetické doplnění tkalcovského stavu pomůckami, které vychází ze stejného inspiračního zdroje jako frézované díly na nosnících stavu. Proto ke každému alternativnímu dílu konstrukce stavu chci nabídnout příslušenství ze stejné tvarové rodiny.

Obr. 62 Tkalcovský stav s prošlupním zařízenim (ukázka)

Prošlupní zařízení se ukázalo být jedinou výjimkou, které bude mít univerzální řešení. Důvodem je funkční stránka předmětu. Ačkoliv se prošlupní zařízení vyvíjelo spolu s konstrukcí tkalcovského stavu, vyskytly se problémy, které se daly vyřešit pouze použitím tradičního zpracování nebo jeho obdobné podoby.

Obr. 64 Vyvijený návrh
Obr. 65 Funkční návrh

Obr. 66 Návrh setu č. 1

Obr. 67 Návrh setu č. 2

Obr. 68 Návrh setu č. 3

Člunky a jedna tkací jehla jsou na rozdíl od hřebenu a druhé jehly vyrobeny z přírodního materiálu. U člunků, které jsou stejně velké jako šíře stavu se musí zvolit pevného materiálu, aby se nedocházelo k vlnění nebo jiné komplikaci při tkaní. Důvodem, proč jsou obě jehly z jiného materiálu je prostý - jehla z přírodního materiálu je vyrobená v rovině, zatímco jehla z alternativního materiálu má špičku zahnutou kvůli snazší práci s provlékáním útku.

Prototypování

Nedílnou fází procesu navrhování tvoří prototypování. V průběhu semestru vzniklo v domácích podmínkách pár modelů v měřítku 1:1 ($700 \times 512 \times 320 \mathrm{~mm}$) a 2:1, na kterých byla postupně ověřována stabilita konstrukce, chování produktu při tkaní, a především testování rozměrů zvoleného materiálu.

U prvního modelu bylo upozorněno na příliš přímé postavení konstrukce, které by mohlo ohrozit tkalce při práci. V rámci redukování obav bylo zalomení konstrukce zvýšeno o pár stupňů navíc, zároveň byla prodloužená opěrná základna a došlo k zaměnění hranolu s profilem $35 \times 35 \mathrm{~mm}$ za $30 \times 30 \mathrm{~mm}$ s ohledem na odlehčení rámu.

Na základě znalostí a poznatků z procesu navrhování, modelování v digitálním prostředí a testech na zkouškových modelech byl vytvořen a sestaven model v měřítku 1:1.

Náplní testování ovšem nebyla jen konstrukce tkalcovského stavu, ale také testování tkacích pomůcek, u kterých se především hledalo správné tvarové a rozměrové řešení.

Obr. 69 Model konstrukce v měřítku 1:1

08. Produkt

Poslední kapitola se zabývá konstrukčním řešením finálního řešení, volbou dřevěného včetně alternativního materiálu a povrchovou úpravou. V samotném závěru se nachází vizualizace konečného řešení, zvolených variací alternativních prvků a stručná dokumentace funkčnosti produktu a příslušenství.

Od počátku určení konceptu bylo zřejmé, že se na výrobě bude v jisté míře podílet frézování na CNC strojích, řezání laserem a následné ohýbání alternativních materiálı̊. Tudíž se produkt po celou dobu navrhování přizpůsoboval subtraktivní výrobní technologii.

Pevná konstrukce tkalcovského stavu se skládá z šesti základních dílı̊ ze dřeva a dvou alternativních, které jsou následně smontovány kovovými spoji.

Při prvním bádání ohledně různých variant spojení jednotlivých dílů jsem se začátku pracovala s principem spojení neprůchozího čepu kvůli dojmu zvýšené stability a pevnosti konstrukce. Avšak při důkladné rešerši se ukázalo, že tkalcovské stavy na rámu nejsou vystavovány velkému napětí a k funkčnímu řešení jsou dostačující vruty do dřeva.

Zpočátku jsem byla ke spojení tohoto typu skeptická, ale na zkouškovém modelu se ukázalo, že použití vrutů je velmi rychlým a snadným způsobem spojení konstrukce rámu.

Obr. 70 Použité vruty

Obr. 71 Kombinovaný šroub se závitem

S ohledem na sílu použitého materiálu jednotlivých dílů:

- Horní a spodní nosník - $30 \times 30 \times 480 \mathrm{~mm}$
- Hranol pro zatížení - $35 \times 35 \times 480 \mathrm{~mm}$
- Zavětrování - $18 \times 30 \times 480 \mathrm{~mm}$
- Postranní nohy - $18 \times 35 \times 700 \mathrm{~mm}$
byly použity vruty do dřeva s částečným závitem o rozměru $35 \times 55 \mathrm{~mm}$ a k upevnění horního a spodního nosníku se využilo kombinovaných šroubů se závitem o průměru 8 mm . Nosníky byly poté připevněny ke zbytku konstrukce pomocí autorských matic vytištěných na 3D tiskárně.

Hlavním důvodem, proč se realizace nevydala směrem spojení neprůchozím čepem, byla pevná fixace zpevněním lepidlem, kterému jsem se pokoušela vyhnout kvůli možné přepravě tkalcovského stavu. Použití vrutů jsem shledala lepší variantou v rámci individuálního smontování produktu v domácích podmínkách. Při transportu produktu do svého domova v již sestavené podobě dochází k větším nárokům na prostor.

Od počátku, kdy se v návrhu objevily zaoblené postranní nohy, vznikaly otázky ohledně výroby. Ačkoliv silueta v jedné rovině působí jednoduše, prvním řešením se zdálo být ohýbání dřeva. „Tvarování ohýbáním je beztřísková metoda tvarování dřeva, která je založena na schopnosti dřeva plasticky se deformovat. Změna tvaru se dosahuje působením vnějších sil, následkem kterých jsou v materiálu vyvolané deformace, čímž dochází k tvarování dílce." ($\mathrm{n}-\mathrm{i}-\mathrm{s}$, © 2013) Avšak nad použitím této technologie nebylo vůbec uvažováno, především kvůli vysokým nákladům, které by při této výrobě vznikly. V oblasti nábytkářství se ale využívá i dalších metod, jak dosáhnout tvarovaného objektu. Oblého tvaru lze dosáhnout také:

- Lisováním mnoha vrstev tenkého materiálu (například dýhy)
- Odebíráním materiálu (subtraktivní výrobní proces)

Na základě této skutečnosti bylo rozhodnuto oblé tvary nohou frézovat. Tato metoda nepatřila mezi první možné řešení kvůli odpadového materiálu, který by při výrobě takového kusu dřeva vznikl. Přesto jsem trvala na tomto výrobním procesu a hledala řešení pro využití potenciálního odpadu. Poněvadž oblé nohy vytváří uvnitř volný prostor, využila jsem této prázdné plochy k vytvoření malé varianty současného produktu. Menší verze tkalcovského stavu byla navrhnuta na základě designu svého předchůdce, avšak s drobnými změnami v konstrukci a spojovacím materiálu.

Produkt ze zbytkového materiálu je zjednodušenou verzí toho hlavního. Síla postranních nohou zůstává tedy stejná (18 mm), mění se pouze výška a šířka samotného produktu - $316 \times 400 \mathrm{~mm}$. Odlišnost se objevuje v odstranění zavětrování, kterého není v malé podobě tkacího rámu zapotřebí, a ve fixaci horního a spodního nosníku vruty. Na rozdíl od původní verze stavu, zde není nutné upevňování pomocí matic, jelikož v této velikosti se nestává často, aby osnova povolila své napětí. Zároveň není nutné pracovní plochu více zmenšovat.

Obr. 72 Stav ze zbytkového materiálu v porovnánís původním

Při volbě materiálu jsem vycházela z teoretické části své práce. Tkalcovské stavy se vyrábějí prěedevším z tvrdých dostupných dřevin. Mou prioritou bylo hledání pevného a odolného materiálu s jemnou kresbou a na pohled příjemným zbarvením, které by bylo dobře opracovatelné. Po rozhodování se nad javorovým a bukovým dřevem, bylo rozhodnuto pro konstrukci tkalcovského stavu použít dřevo bukové, které splňuje mé požadavky ohledně pevnosti, odolnosti, a dokonce i pěkné přírodní kresbě dřeva. Výhodou této dřeviny je, že nabízí mnoho možností povrchových úprav. Ačkoliv se jedná o dřevo s náchylností k biotickým vlivům (napadení houbami, hmyzem), není nutné se obávat, nebot produkt je určený primárně do prostor interiéru, nikoliv exteriéru.

Důležitým bodem bylo také zvolit správný materiál pro alternativní díly produktu. Zde hrála důležitou roli barevná škála materiálu, chování při ohýbání a lehká zpracovatelnost při řezání laserem. Zároveň se musí jednat o lehký materiál, který je snadno dostupný a příjemný na dotek bez prítomnosti ostrých hran.

Prvním testovaným materiálem bylo plexisklo - „Polymethylmethakrylát (PMMA) běžně známý jako plexisklo a akrylátové sklo je průhledný syntetický polymer s vlastnostmi termoplastu. Nejcharakterističtějěí vlastností PMMA je jeho čirost a naprostá bezbarvost i v tlustých vrstvách." (polyplasty)

V rámci testování vlastností materiálu bylo použito vzorku s tlouštkou 3 mm (obr. 73-74). Jednalo se o materiál, o kterém bylo uvažováno velmi dlouho dobu kvůli skvělým vlastnostem jako odolnost proti poškrábání, lesk a snadné ohýbání za tepla. Avšak ke konci se ukázalo, že to nebude vhodný materiál. Pro alternativní díly jsem chtěla využít stejného materiálu jako u příslušenství, proto byl kladen důraz také na povrch materiálu kvůli kontaktu s pokožkou. Nevýhodou se ukázal být lesklý povrch, který sice působí estetickým dojmem, ale lesklý povrch znamená, že materiál bude kluzký a při kontaktu s pokožkou nebude působit příjemně. Obávaným faktorem bylo také štěpení, které vzniká při zlomení nebo nalomení produktu. Mimo jiné ostré hrany by mohly narušit pevnou strukturu osnovní nitě.

Samozřejmě se hledaly i vhodné alternativy, například deska s drsnějším povrchem (obr. 74), která působí mnohem příjemněji na dotek, ale stále se zde nachází riziko ostrých hran.

Podobné nepříjemnosti se objevily i u HPS desky, což je houževnatý zdravotně nezávadný polystyren, který se vyznačuje „zvýšenou tepelnou odolností, výbornou tvarovatelností, zvýšenou odolností výrobku vůči poškození rázem, velmi dobrými izolačními vlastnostmi a dobrým povrchovým vzhledem." (prodej-montaz-lexanu)

Po neúspěšném hledání jsem se rozhodla hledat správný materiál v oblasti modelářských potřeb. Ihned na počátku se vyskytl zajímavý cenově dostupný materiál - PVC tvrzené pěnové desky. Hladký povrch na pružném a lehkém materiálu, který se vyznačuje odolností proti nárazu včetně vlhkosti, snadnou tvarovatelností a především opracovatelností, se velmi osvědčil. Dostupný je dokonce v mnoha barvách, přičemž spolu se zmíněnými vlastnostmi byl vybrán pro atraktivní ztvárnění alternativních prvků tkalcovského stavu.

Vhodná povrchová úprava může povznést design produktu. Ačkoliv se tkalcovské stavy nechávají často v surovém provedení, zde bylo rozhodnuto, že přirozená krása dřeva bude podpořena olejovým nátěrem, který zachová jemnou kresbu dřeva a zvýší kvalitu produktu.
> 8.1.4 Pourchová úprava

Obr. 75 Finální řešení se vzorem č. 2
Obr. 76 Produkt s prošlupním zařízením a nataženou osnovou

8.2.1 Technická dokumentace

Obr. 81 Technická skica základnich rozměrů produktu v mm

Obr. 82 Technická skica z profilu v mm

512

Obr. 83 Technická skica frézovaného dílu v mm ve fázi před ohýbáním

Závěr

Výsledkem této bakalárské práce je set tkalcovského stavu na rámu včetně tkacího příslušenství s využitím atraktivních prvků v podobě alternativního materiálu, který vnesl do výrobku krásu barev a hravý jednotný tvarový styl. Ten vychází z autorských vzorů inspirovaných uměleckou tvorbou období Velké Moravy, která byla stěžejním inspiračním zdrojem v rámci podpoření estetické stránky produktu a odlišení se od současné nabídky sortimentu trhu.

Set splnil předem určené požadavky na hravé pojetí, jednoduchost, variabilitu a zapojení inspirativních zdrojů do dominantních prvků projektu. Projekt ve finálním řešení nabízí různé barevné a tvarové řešení, ve kterém se slučuje tradiční výroba s využitím moderní technologie, která usnadňuje výrobní proces jinak složitě vyrobitelných dílů produktu. Koncept bych v budoucnosti ráda aplikovala i na další textilní techniky, které bych si prála dostat do povědomí dnešního rušného světa, poněvadž samotné techniky jsou v jistém ohledu metodou relaxace a uklidnění mysli.

Celý proces vývoje od prvních rešerší, přes nezdary a úspěchy v navrhování mi přinesl nejen radost z realizovaného výrobku, ale i řadu zkušeností a chyb, z kterých se člověk nejen učí, ale i z nich vychází v rámci nových myšlenek a nápadů pro budoucí projekty.

Seznam použité literatury

[1] About Studio Koekoek - History. Modern Cross Stitch and Punch Needle Supplies | Studio Koekoek [online]. Dostupné z: https://studio-koekoek.com/about-us/
[2] Ashford handicrafts - about us. ashford handicrafts - ashford.co.nz [online]. Copyright © 2021 Ashford Handicrafts Ltd. [cit. 20.05.2021]. Dostupné z: https://www.ashford.co.nz/about-us
[3] BENDA, Klement. Listy filologické / Folia philologica.
roč. 101, Čís. 3 1978, ČSAV Praha 1978
[4] CORBETT, Stephen. Práce se dřevem: kompletní praktická příručka: ucelený soubor návodů pro kutily. 2. vyd. Přeložil Jiř́í BAUDYŠ. Čestlice: Rebo, 2007. ISBN 80-7234-663-6.
[5] FORRESTER, Paul. Práce se dřevem: kompletní obrazový průvodce technikami. Druhé vydání. Přeložil David BERÁNEK. V Praze: Slovart, 2019. ISBN 978-80-7529-786-0.
[6] GALUŠKA, Luděk. Velká Morava. Brno: Moravské zemské muzeum, 1991. Za poznáním do muzea. ISBN isbn80-7028-022-0.
[7] HEJNA, Antonín a Antonín DOSTÁL. Velká Morava: 1000 let tradice státního a kulturního života. Praha: Praha - Hrad, Vladislavský sál, červenec - zárí 1964, Praha: [s.n.], 1964
[8] History/About Us - Beka. Welcome to Beka - Beka [online]. Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/read/2/historyabout-us
[9] History. Louët [online]. Copyright © 2021 Louët BV - All Rights Reserved. [cit. 12.03.2021]. Dostupné z: https://www.louet.nl/historie/?lang=en\&v=928568b84963
[10] History of weaving - Early hand weaving - Quatr.us Study Guides. Quatr.us Study Guides - Simple history and science articles with a leftist take [online]. Copyright © 1996 [cit. 20.05.2021]. Dostupné z: https://quatr.us/clothing/history-weaving-early-hand-weaving.html
[11] HPS desky | Prodej plastů | Elima - Nedakonice. Prodej plastů | Elima - Nedakonice [online]. Dostupné z: https://www.prodej-montaz-lexanu.cz/hps-desky
[12] JOSTEN, Elmar, Thomas REICHE a Bernd WITTCHEN. Truhlářské konstrukce: spoje, povrchové úpravy dřeva, konstrukce. Praha: Grada, 2011. Stavitel. ISBN 978-80-247-2960-2.
[13] KAVINA, Karel. Anatomie dřeva. V Praze: Ministerstvo zemědělství, 1932. Publikace ministerstva zemědělství RČS.
[11] HPS desky | Prodej plastů | Elima - Nedakonice. Prodej plastů | Elima - Nedakonice
[online]. Dostupné z: https://www.prodej-montaz-lexanu.cz/hps-desky
[12] JOSTEN, Elmar, Thomas REICHE a Bernd WITTCHEN. Truhlářské konstrukce: spoje, povrchové úpravy dřeva, konstrukce. Praha: Grada, 2011. Stavitel. ISBN 978-80-247-2960-2.
[13] KAVINA, Karel. Anatomie dřeva. V Praze: Ministerstvo zemědělství, 1932. Publikace ministerstva zemědělství RČS.
[14] KOUŘIL, Pavel, ed. Velká Morava a počátky křestanství: 27.11.2014-28.2.2015 - Palác šlechtičen, Moravské zemské muzeum, Brno, 17.4.2015-28.6.2015 - Císařská konírna, Pražský hrad, Praha, 7.8.2015-1.11.2015 - Bratislavský hrad, Bratislava. Brno: Archeologický ústav Akademie věd ČR, Brno, v.v.i. ve spolupráci s Moravským zemským muzeem, 2014. ISBN 978-80-86023-53-3.
[15] KOUŘIL, Pavel a Markéta TYMONOVÁ. Slovanský kostrový mohylník ve Stěbořicích. Brno: Archeologický ústav Akademie věd České republiky, 2013. ISBN 978-80-86023-88-5.
[16] KULA, Daniel, Elodie TERNAUX a Quentin HIRSINGER. Materiology: průvodce světem materiálů a technologií pro architekty a designéry. Praha: Happy Materials, c2012, 342 s. ISBN 9788026005384.
[17] Maple Wood: Color, Grain, \& Other Characteristics,Vermont Woods Studios. Vermont Woods Studios: Fine Furniture and Home Decor [online]. Copyright © 2005 [cit. 20.05.2021]. Dostupné z: https://vermontwoodsstudios.com/content/maple-wood
[18] Melissa \& Doug - Modroočko.cz. Dřevěné hračky české
i ze světa | Dětské hry - Modroočko.cz [online]. Copyright © 2014 [cit. 20.05.2021].
Dostupné z: https://www.modroocko.cz/vyrobci/melissa-doug/
[19] Meet Melissa and Doug. Melissa \& Doug: \#1 Parent Recommended For Creativity \& Learning [online]. Copyright © 2021 Melissa [cit. 20.05.2021].
Dostupné z: https://www.melissaanddoug.com/meet-melissa-and-doug.html
[20] NIEDERLE, Lubor. Příspěvky k vývoji byzantských šperki̊ ze 4.- 10. stol., ČSAV Praha 1930
[21] NIS - Nábytkářský informační systém. NIS - Nábytkářský informační systém [online]. Copyright ©2013 [cit. 20.05.2021]. Dostupné z: http://www.n-i-s.cz/cz/technologicka-priprava/
[22] Od nitky k plášti aneb jak naši předkové k látkám přišli | Archeologie na dosah. Archeologie na dosah | Edukace a prezentace archeologického kulturního dědictví [online]. Copyright ©Národní muzeum [cit. 20.05.2021]. Dostupné z: https://www.archeologienadosah. cz/clanky/od-nitky-k-plasti-aneb-jak-nasi-predkove-k-latkam-prisli
[23] Our Story - Schacht Spindle Company. Schacht Spindle Company - Tools for the crafts we love [online]. Copyright © 2021 Schacht Spindle Company, Inc. All Rights Reserved. [cit. 12.03.2021]. Dostupné z: https://www.schachtspindle.com/our-story/
[24] Polymethylmethakrylat, PolyPLASTY [online].
Dostupné z: https://www.polyplasty.cz/polymethylmethakrylat.html
[25] PROŠKOVÁ, Iva. Tkaní na rámu. Praha: Grada, 2010. Výtvarný kurz. ISBN 978-80-247-2274-0.
[26] Tkaní na stavu - Dům pod jasanem. Dům pod jasanem [online].
Dostupné z: http://www.dumpodjasanem.cz/o-nas/o-remeslech/-8-tkani-na-stavu.html
[27] Tools and supplies for knitting weaving and by CraftWoodGoods. Etsy - Shop for handmade, vintage, custom, and unique gifts for everyone [online]. Copyright © 2021 Etsy, Inc. [cit. 20.05.2021]. Dostupné z: https://www.etsy.com/shop/CraftWoodGoods?ref=simple-shop-hea-der-name\&listing_id=683612032
[28] TŘEŠTÍK, Dušan. Počátky Přemyslovců: vstup Čechů do dějin (530-935). Praha: NLN, Nakladatelství Lidové noviny, 1997. Česká historie. ISBN 80-7106-138-7.
[29] TŘEŠTíK, Dušan. Vznik Velké Moravy: Moravané, Čechové a střední Evropa v letech 791-871. Praha: Nakladatelství Lidové noviny, 2001. Česká historie. ISBN isbn80-7106-482-3.
[30] URBANOVÁ, Kristýna et al., „Textilní plodiny a jejich využití v mladší době železné, móda a odívání. © Boii o. s., 2012.
[31] Velká Morava - 34 mm stříbro Proof: 630 Kč. Emisní plán mincí České národní banky 2021-2025 [online]. Copyright © fotografie této ražby jsou chráněny autorským zákonem. [cit. 12.04.2021]. Dostupné z: https://www.mince-cnb.cz/velka-morava-34mm-stribro-pro-of-00006322
[32] Vlastnosti dřeva - Oknotherm. Oknotherm - Plastová okna, eurookna a dveře [online]. Copyright © 2021 OKNOTHERM spol. s r.o. [cit. 20.05.2021]. Dostupné z: https://www. oknotherm.cz/vlastnosti-dreva/
[33] WOLFOVÁ, Eva a Zuzana ARSENJEVOVÁ. Tkaní. Brno: CP Books, 2005. Tradiční řemesla. ISBN 80-251-0301-3.
[34] Wood as a Building Material; It's Benefits and Disadvantages. Ana Sayfa - T.C. Kültür ve Turizm Bakanlığı [online]. Copyright © 2021 [cit. 20.05.2021]. Dostupné z: https://www.ktb. gov.tr/EN-98769/wood-as-a-building-material-it39s-benefits-and-disadvan-.html
[35] Understanding the CNC Milling Process - MF Engineering Company, Inc.. MF Engineering - CNC Swiss Machining - Custom Plastics Machining [online]. Copyright © 2021 [cit. 20.05.2021]. Dostupné z: https://www.mfeng.com/blog/understanding-the-cnc-milling-process/
[36] 9 Things You Need to Know About Beech Wood | WL West \& Sons Ltd. Timber Merchants | Timber Suppliers | Pro Fencing | WL West [online]. Dostupné z: https://www.wlwest. co.uk/opinion/9-things-you-need-to-know-about-beech-wood/

Seznam použitých symbolů a zkratek

2D	dvojrozměrný
3D	trojrozměrný
obr.	Obrázek
č.	Číslo
mm	milimetry

Seznam obrázků

Obヱázek 1 Vertikální stav se závažím na výjevu vázového malǐrství z 6. století př. n. l.
Od nitky k pláši aneb jak naši předkové k látkám přišli | Archeologie na dosah. Archeologie na dosah |Edukace a prezentace archeologického kulturního dědictví [online]. Copyright © 2012-2021 Národní muzeum [cit. 20.05.2021]. Dostupné z: https://www.archeologienadosah.cz/clanky/od-nitky-k-plasti-aneb-jak-nasi-pred-kove-k-latkam-prisli
Obrázek 2 vyjev z Egypta
Tkalci |Starověký Egypt. Starověký Egypt a jeho historie | Starověký Egypt [online]. Copyright © 2019 [cit. 20.05.2021]. Dostupnéz: https://www.starovekyegypt.net/egyptska-remesla/tkalci.php

Obrázek 3 sada základních pomůcek ke tkaní
[online]. Dostupnéz: https://www.amazon.ca/Weaving-Accessories-Tapestry-Supplies-Handcrafted/dp/ B07PV36MZS
Obrázel. 4 Prošlupní zarízení
Small weaving loom \mid Studio Koekoek \mid Modern Embroidery. Modern Cross Stitch and Punch Needle Supplies | Studio Koekoek [online]. Dostupné z: https://studio-koekoek.com/shop/weaving/small-weaving-loom-with-heddle-bar-beech-wooden-lap-loom-20-cm-width/
Obrázek 5 Roudeeni dieva
FORRESTER, Paul. Práce se dřevem: kompletní obrazový průvodce technikami. Druhé vydání. Přeložil David BERÁNEK. V Praze: Slovart, 2019, s. 9, ISBN 978-80-7529-786-0.
Obrázek 6 Rozdělení pórovitosti
FORRESTER, Paul. Práce se dřevem: kompletní obrazový průvodce technikami. Druhé vydání.
Přeložil David BERÁNEK. V Praze: Slovart, 2019, s. 9, ISBN 978-80-7529-786-0.
Obrázek 7 Tkalcovský stav značky Mellisa Doug
Multi-Craft Weaving Loom | Melissa \& Doug. Melissa \& Doug: \#1 Parent-Recommended For Creativity \& Learning [online]. Copyright © 2021 Melissa [cit. 20.05.2021]. Dostupnéz: https://www.melissaanddoug. com/multi-craft-weaving-loom $/ 9381 . \mathrm{html}$
Obrázek 8 Detail natahování osnovy
Multi-Craft Weaving Loom | Melissa \& Doug. Melissa \& Doug: \#1 Parent-Recommended For Creativity \& Learning [online]. Copyright © 2021 Melissa [cit. 20.05.2021]. Dostupné $z:$ https://www.melissaanddoug. com/multi-craft-weaving-loom $/ 9381 . \mathrm{html}$

Obrázek 9 Tkalcovský stav značky Beka

20 Inch Weaving Frame Loom with Stand - The Deluxe! - Beka. Welcome to Beka - Beka [online]. Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/ buy/07/20-inch-weaving-frame-loom-with-stand-the-deluxe
Obrázek 10 Detail plastového prvku nosníku
20 Inch Weaving Frame Loom with Stand - The Deluxe! - Beka. Welcome to Beka - Beka [online].
Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/ buy/07/20-inch-weaving-frame-loom-with-stand-the-deluxe

Obrázek 11 Poloha č. 1 The Grizzly
36 Inch Adjustable Tapestry Loom - The Grizzly! - Beka. Welcome to Beka - Beka [online].
Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/buy/griz-zly/36-inch-adjustable-tapestry-loom-the-grizzly
Obrázek 12 Poloha č. 2
36 Inch Adjustable Tapestry Loom - The Grizzly! - Beka. Welcome to Beka - Beka [online].
Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/buy/griz-zly/36-inch-adjustable-tapestry-loom-the-grizzly
Obrázek 13 Poloha č. 3
36 Inch Adjustable Tapestry Loom - The Grizzly! - Beka. Welcome to Beka - Beka [online].
Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/buy/griz-zly/36-inch-adjustable-tapestry-loom-the-grizzly
Obrázek 14 Vertikální stav značky Ashford
ashford handicrafts - tapestry loom. ashford handicrafts - ashford.co.nz [online]. Copyright © 2021 Ashford Handicrafts Ltd. [cit. 20.05.2021]. Dostupné z: https://www.ashford.co.nz/weaving-frame/product/tapes-try-loom

Obrázel 15 Horizontální stav studia Koekoek

Small weaving loom| Studio Koekoek | Modern Embroidery. Modern Cross Stitch and Punch Needle Supplies | Studio Koekoek [online]. Dostupné z: https://studio-koekoek.com/shop/weaving/small-weaving-loom-with-heddle-bar-beech-wooden-lap-loom-20-cm-width/
Obrázel 16 Rozloženýa a složený rám Easel Weaver
Easel Weaver - Schacht Spindle Company. Schacht Spindle Company - Tools for the crafts we love [online]. Copyright © 2021 Schacht Spindle Company, Inc. All Rights Reserved. [cit. 20.05.2021].
Dostupnéz: https://www.schachtspindle.com/product/easel-weaver/
Obrázek 17 Rám v základní poloze
Easel Weaver - Schacht Spindle Company. Schacht Spindle Company - Tools for the crafts we love [online]. Copyright © 2021 Schacht Spindle Company, Inc. All Rights Reserved. [cit. 20.05.2021].
Dostupné z: https://www.schachtspindle.com/product/easel-weaver/
Obrázek 18 Lisa v základní velikosti
Weft Blown [online]. Dostupné z: https://www.weftblown.com/products/louet-lisa-frame-loom
Obrázek 19 Lisa se zuby z alternativního materiálu
Weft Blown [online]. Dostupné z: https://www.weftblown.com/products/louet-lisa-frame-loom
Obrázelk 20 Beka, 14 palců
14 Inch Weaving Frame Loom - Beka. Welcome to Beka - Beka [online]. Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/buy/07001/14-inch-weaving-frame-loom
Obrázek 21 Detail
14 Inch Weaving Frame Loom - Beka. Welcome to Beka - Beka [online]. Copyright © 2021 Specialty Toys Network, [cit. 20.05.2021]. Dostupné z: https://www.bekainc.com/buy/07001/14-inch-weaving-frame-loom
Obrázek 22 Tkací rám a pomůcky s využitím 3D tisku
Weaving loom kit for beginners Weaving frame Tapestry DIY|Etsy. Etsy - Shop for handmade, vintage, custom, and unique gifts for everyone [online]. Copyright © 2021 Etsy, Inc. [cit. 20.05.2021]. Dostupnéz: https://www.etsy.com/listing/683612032/weaving-loom-kit-for-beginners-weaving?ga_order=highest_reviews\&ga_search_type=all\&ga_view_type=gallery\&ga_search_query=weaving+loom + kit\&ref=sr_gallery-223\&from_market_listing_grid_organic $=1$ \&frs $=1 \& c o l=1$
Obrázelk 23 Barevné variace hřebenu
Weaving loom kit for beginners Weaving frame Tapestry DIY|Etsy. Etsy - Shop for handmade, vintage, custom, and unique gifts for everyone [online]. Copyright © 2021 Etsy, Inc. [cit. 20.05.2021]. Dostupnéz: https://www.etsy.com/listing/683612032/weaving-loom-kit-for-beginners-weaving?ga_order=highest_re-viewsটga_search_type=all\&ga_view_type=gallery\&ga_search_query=weaving+loom+kit\&ref=sr_gallery-223\&from_market_listing_grid_organic $=1$ \&frs $=1 \& \mathrm{col}=1$
Obıázek 24 Tkací rám z lepenky
Cardboard weaving loom for beginners | Studio Koekoek. Modern Cross Stitch and Punch Needle Supplies | Studio Koekoek [online]. Dostupné z: https://studio-koekoek.com/shop/cross-stitch-supplies/supplies-for-chil-dren/cardboard-weaving-loom/

Obrázek 25 Tkací rám z plastové desky
Mini Loom Weaving Kit－Schacht Spindle Company．Schacht Spindle Company－Tools for the crafts we love ［online］．Copyright © 2021 Schacht Spindle Company，Inc．All Rights Reserved．［cit．20．05．2021］．
Dostupné z：https：／／www．schachtspindle．com／product／mini－loom－weaving－kit／
Obrázek 26 Rozložený tkací rám
Hawthorn Handmade［online］．Dostupné z：https：／／www．hawthornhandmade．com／collections／weaving／prod－ ucts／pop－up－weaving－loom
Obrázek 27 Složený tkací rám
Hawthorn Handmade［online］．Dostupné z：https：／／www．hawthornhandmade．com／collections／weaving／prod－ ucts／pop－up－weaving－loom
Obrázek 28 Tkací rám z plexiskla
Plexiglas weaving loom 15×24 cm starter kit－Kesi＇Art．［online］．Copyright © Kesi［cit．20．05．2021］．Dos－ tupné z：https：／／www．kesi－art．com／en／kesi－market／1613－weaving－loom－15－x－24－cm－3760172981114．html Obrázek 29 Tkací rám v kombinaci dřeva a kovu
Weaving frame loom wood and copper hanging wall art \mid Etsy．Etsy－Shop for handmade，vintage，custom， and unique gifts for everyone［online］．Copyright © 2021 Etsy，Inc．［cit．20．05．2021］．Dostupné z： https：／／www．etsy．com／listing／814765157／weaving－frame－loom－wood－and－copper？ga＿order＝highest＿re－ views\＆ga＿search＿type＝all\＆ga＿view＿type＝gallery\＆ga＿search＿query＝weaving＋loom + kit $\Leftarrow r e f=s r _g a l l e r y-2-$ 2\＆from＿market＿listing＿grid＿organic＝1
Oloáze凡 30 Nálezy ženských šperků podunajského typu z Mohylového pohřebiště ve Stěbořicích KOUŘIL，Pavel a Markéta TYMONOVÁ．Slovanský kostrový mohylník ve Stěbořicích．Brno：Archeologický ústav Akademie věd České republiky，2013，s．130，ISBN 978－80－86023－88－5．
Olázek 31 Běžné předměty，se kterými byli zesnulí pohřbeni． A ＝náušnice a korálky，
$\mathrm{B}=$ gombíky a spony
KOUŘIL，Pavel，ed．Velká Morava a počátky křestanství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．97，ISBN isbn978－80－86023－53－3．
Olózek 32 Grafické ztvárnění gombíků ze zlata a stříbra
HEJNA，Antonín a Antonín DOSTÁL．Velká Morava： 1000 let tradice státního a kulturního života．Praha： Praha－Hrad，Vladislavský sál，červenec－září 1964，Praha：［s．n．］，1964，s． 20
Olázek 33 Masivní bubínkové náušnice ze zlata
KOUŘIL，Pavel，ed．Velká Morava a počátky křesṫanství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．127，ISBN isbn978－80－86023－53－3．
Ob̌zák 34 Zlaté hrozničkové náušnice s řetízky
KOUŘIL，Pavel，ed．Velká Morava a počátky křest́anství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．127，ISBN isbn978－80－86023－53－3．
Obエázeに 35 Košíčkové náušnice，mistrovská řemeslná práce
KOUŘIL，Pavel，ed．Velká Morava a počátky křest́anství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．60，ISBN isbn978－80－86023－53－3．
Obrázek 36 Lunicovite nausuices setitiky
KOUŘIL，Pavel，ed．Velká Morava a počátky křest̛anství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．132，ISBN isbn978－80－86023－53－3．
Obázek 37 Zlaté náušnice s úzkou lunicí
KOUŘIL，Pavel，ed．Velká Morava a počátky křestanství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．127，ISBN isbn978－80－86023－53－3．

Olózek 38 Pozlacené sloupečkové náušnice s bubínky
KOUŘIL，Pavel，ed．Velká Morava a počátky křesṫanství：27．11．2014－28．2．2015－Palác šlechtičen，Moravské zemské muzeum，Brno，17．4．2015－28．6．2015－Císařská konírna，Pražský hrad，Praha，7．8．2015－1．11．2015－ Bratislavský hrad，Bratislava．Brno：Archeologický ústav Akademie věd ČR，Brno，v．v．i．ve spolupráci s Moravským zemským muzeem，2014，s．131，ISBN isbn978－80－86023－53－3．
Obrázek 39 skici č． 1
Vlastní zdroj
Obrázek 40 skici č． 2
Vlastní zdroj
Obィázeに41 Vizualizace skici prvního návrhu Vlastní zdroj
Obª́zeK 42 Inspirační zdroje jsou především oblého tvarování
Vlastní zdroj
Olázek 43 vizualizace skici druhého návrhu Vlastní zdroj
Obrázek 44 Vizualizace třetího návrhu Vlastní zdroj
Obıázeณ 45 Kreslení v Adobe Illustrator
Vlastnízdroj
OlóázeR 46 Exportování křivek do Cinema 4D Vlastní zdroj
Olorázek 47 První vizualizace na počátku vývoje Vlastní zdroj
OloázeK 48 Vizualizace konstrukce ve fázi před zásahem alternativních prvků Vlastní zdroj
Obráze凡．49 Umístění nosníků a zavětrování Vlastnízdroj
Obrázek 50 Pohled z profilu Vlastní zdroj
Obıázek 51 Vývoj návrhu vzoru č． 1
Vlastní zdroj
Obắzek 52 Aplikace návrhu č． 1 na produkt Vlastní zdroj
Olózek 53 vývoj návrhu vzoru č． 2 Vlastní zdroj
Obıázek 54 Vývoj návrhu vzoru č． 3
Vlastní zdroj
Obuázek 55 Přední pohled
Vlastní zdroj
Obrázek 56 Pohled ze strany
Vlastní zdroj
Obrázek 57 Hvězdicová matice，plast Vlastní zdroj
Obrázek 58 Kulata matice，plast
Vlastní zdroj
Obrázek 59 Návrh matice č． 1
Vlastnízdroj
Obrázel2 60 Návrh matice č． 2
Vlastnízdroj
ObrázeK 61 Návrh matice č． 3

Vlastnízdroj
Olázek 62 Tkalcovský stav s prošlupním zařizením（ukázka）
Vlastní zdroj
Obrázek 63 Tradiční podoba
ObrázeK 64 Vyvíjený návrh Vlastní zdroj
Obェázek 65 Funkční návrh
Vlastní zdroj
Olorázeに 66 Návrh setu č． 1
Vlastnízdroj
Obrázek 67 Návrh setu č． 2
Vlastnízdroj
Obrázeに 68 Návrh setu č． 3
Vlastní zdroj
Obázek 69 Model konstrukce v měřítku 1：1 Vlastní zdroj
Obrázek 70 Použité vruty
Vrut zápustný 3，5x55 PZ2 ZŽ částečný závit．Kotevní patky［online］．
Dostupné z：https：／／kotevnipatky．cz／vruty－univerzalni－se－zapustnou－hlavou／371－vrut－zapust－ ny－35x55－pz2－zz－castecny－zavit．html
Obィázek 71 Kombinovaný šroub se závitem
Kombivrut závitový－Briol．Briol［online］．Copyright © 2013 ［cit．20．05．2021］． Dostupné z：https：／／www．briol．cz／kombivrut－zavitovy

Obázel． 72 stav ze zbytkového materiálu v porovnání s původním

 VlastnízdrojObrázek 73 Polymethylmethalkrylát
Vlastní zdroj
Obrázek 74 s drsným povrchem
Vlastní zdroj
Obrázek 75 Finální řešení
Vlastní zdroj
Obráze凡 76 Produkt s prošlupním zařízením a nataženou osnovou Vlastní zdroj

Obrázek 77 Pohled z profilu

 VlastnízdrojObázek 78 Detail horního nosníku
Vlastní zdroj
Obrázek 79 Detail spodní části Vlastní zdroj
Obıázeれ 80 Tkací pomůcky（příslušenství）setu č． 2
Vlastní zdroj
Olózek 81 Technická skica základních rozměrů produktu v mm Vlastní zdroj
Obıázek 82 Technická skica z profilu v mm Vlastnízdroj
Orázek 83 Technická skica frézovaného dílu v mmve fázi před ohýbáním Vlastní zdroj
Obráze凡 84 Technická skica příslušenství v mm
Vlastní zdroj

Seznam tabulek

Tabullka. 1 Rozdělení laků
JOSTEN, Elmar, Thomas REICHE a Bernd WITTCHEN. Truhlářské konstrukce: spoje, povrchové úpravy dřeva, konstrukce. Praha: Grada, 2011. Stavitel, s.133, ISBN 978-80-247-2960-

Nrlorrlorn

Novincon

[^0]: 1. Rešerše inspiračnich zdrojũ vztahujicich se k tématu práce
 2. Vlastní analýza poznatkú pro následnou práci s tématem
 3. Variantní návrhy ${ }^{\text {reséení }}$
 4. Postup zpracování vybrané varianty $\mathfrak{\text { FeŠení }}$
 a) teoretickd́ čäst v rozsahu $25-30$ normostran textu
 b) prototyp nebo funkċni model nebo fyzicky model v mẻ̉itku 1:1, 1:2, 1:3, 1:5, 1:10 podle charakteru projektu a konzultace
 s vedoucim práce
 c) grafickả prezentace v rozsahu minimálně $2,8 \mathrm{~m}^{2}$
[^1]: ${ }^{1}$ Osnovní vál = slouží k navinování osnovních nití
 ${ }^{2}$ Postranice = dvě tyče ve vertikální poloze, které tvoří konstrukci tkalcovského stavu
 ${ }^{3}$ Nitěnka = používá se k oddělení osnovních nití pro vytvoření prošlupu a snadnému průchodu útku

[^2]: ${ }^{5}$ Nosník = část stavu umístěna v horní a spodní části, slouží k rovnoměrnému natažení osnovy

[^3]: ${ }^{7}$ Biotický = biologický, vlivy živých organismů
 ${ }^{8}$ Abiotický = vlivy neživého prostředí

[^4]: ${ }^{9}$ Teka obrovská, známá především pod názvem „teak" nebo česky „týk".

[^5]: ${ }^{10}$ Běl je vnější část dřeva, například u javoru se používá kvůli svému mimořádně světlému zbarvení.
 ${ }^{11}$ Jádrové dřevo se nachází uvnitř kmene a bývá tmavšího odstínu než běl.

[^6]: ${ }^{12}$ Dýhy jsou tenké plátky dřeva, určené pro dekorativní nebo konstrukční účely.

[^7]: ${ }^{13}$ Originální znění hesla = Experience the joy and pleasure of creating your own unique yarns, fabric, garments and homeware using our wheels, carders, looms, fibres and yarns. Relax knowing your crafts are sustainable, renewable and environmentally-friendly.

[^8]: ${ }^{14}$ Back to the land bylo sociální hnutí 60 . let, které proběhlo v Severní Americe. Vedlo lidi k migraci z velkých měst do venkovských oblastí a žití obyčejného farmářského života z dohledu rušných velkoměst.

[^9]: ${ }^{15}$ CraftWoodGoods je název projektu, který nabízí své produkty k prodeji na internetových tržištích.
 ${ }^{16}$ Tkaní na karetkách je náročnější předkalcovská technika sloužící především ke tkaní pásů.

[^10]: ${ }^{17}$ Polymetylmetakrylát = též známý pod názvem plexisklo
 ${ }^{18}$ Bohémský styl = módní trend vyznačující se spontánností a zaměřením na duševní stránku věcí

[^11]: ${ }^{19}$ Velkomoravská říše zanikla na počátku 10. století při invazi madarských kmenů, moravská část se stala součástí Českého království a nitranská Uherského království.

[^12]: ${ }^{22}$ M18, M21, M24, M28 je označení hrobů, ve kterých byly šperky nalezeny.

